matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL harm. Oszillator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - DGL harm. Oszillator
DGL harm. Oszillator < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL harm. Oszillator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Di 16.12.2008
Autor: XPatrickX

Aufgabe
[mm] mx''(t)+m\omega^2x=F_0*\cos\omega_a*t [/mm]
[mm] \omega_A= [/mm] äußere Anregungsfrequenz
Anfangsbedingungen: x(t=0)=0, x'(t=0)=0

Hallo!!

Ich muss obige DGL lösen. Dazu wollte ich zuerst die Lösung der homogenen Gleichung bestimmen.  Mit dem Ansatz [mm] e^{\lambda*t} [/mm] komme ich auf die allgemeine Lösung: [mm] $c_1*\sin(\omega t)+c_2*\cos(\omega [/mm] t)$
Wenn ich jetzt versuche die [mm] c_1 [/mm] und [mm] c_2 [/mm] mit den Anfangsbedingungen zu bestimmen, so komme ich auf [mm] c_1=c_2=0. [/mm] Das kann ja nicht sein....

Wie komme ich dann außerdem noch auf die Lösung der inhomogenen Gleichung??

Da ich leider die entsprechende Vorlesung nicht besuchen kann, kann ich nur sehr schlecht mit DGL umgehen.

Danke für Eure Hilfe.
Patrick

        
Bezug
DGL harm. Oszillator: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Di 16.12.2008
Autor: MathePower

Hallo XPatrickX,

> [mm]mx''(t)+m\omega^2x=F_0*\cos\omega_a*t[/mm]
>  [mm]\omega_A=[/mm] äußere Anregungsfrequenz
>  Anfangsbedingungen: x(t=0)=0, x'(t=0)=0
>  Hallo!!
>  
> Ich muss obige DGL lösen. Dazu wollte ich zuerst die Lösung
> der homogenen Gleichung bestimmen.  Mit dem Ansatz
> [mm]e^{\lambda*t}[/mm] komme ich auf die allgemeine Lösung:
> [mm]c_1*\sin(\omega t)+c_2*\cos(\omega t)[/mm]

[mm]x_{H}\left(t\right)=c_{1}*\sin\left(\omega t\right)+c_{2}*\cos\left(\omega t\right)[/mm]


>  Wenn ich jetzt
> versuche die [mm]c_1[/mm] und [mm]c_2[/mm] mit den Anfangsbedingungen zu
> bestimmen, so komme ich auf [mm]c_1=c_2=0.[/mm] Das kann ja nicht
> sein....


Dazu brauchst Du erst die Lösung der inhomogen DGL.


>
> Wie komme ich dann außerdem noch auf die Lösung der
> inhomogenen Gleichung??


Hier mußt Du unterscheiden, ob [mm]\omega = \omega_{A}[/mm] bzw. [mm]\omega=\omega_{A} [/mm] ist.


i) [mm]\omega \not= \omega_{A}[/mm]
   [mm]x_{P}\left(t\right)=\alpha*\sin\left(w_{A}t\right)+\beta*\cos\left(\omega_{A}t\right)[/mm]

ii) [mm]\omega = \omega_{A}[/mm]

[mm]x_{P}\left(t\right)=\alpha*t*\sin\left(w_{A}t\right)+\beta*t*\cos\left(\omega_{A}t\right)[/mm]


>  
> Da ich leider die entsprechende Vorlesung nicht besuchen
> kann, kann ich nur sehr schlecht mit DGL umgehen.
>
> Danke für Eure Hilfe.
> Patrick


Gruß
MathePower

Bezug
                
Bezug
DGL harm. Oszillator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Di 16.12.2008
Autor: XPatrickX

Hey  nochmal,

sorry ich komm da immer noch nicht weiter...

  

> > [mm]mx''(t)+m\omega^2x=F_0*\cos\omega_a*t[/mm]
>  >  [mm]\omega_A=[/mm] äußere Anregungsfrequenz
>  >  Anfangsbedingungen: x(t=0)=0, x'(t=0)=0
>  >  Hallo!!
>  >  
> > Ich muss obige DGL lösen. Dazu wollte ich zuerst die Lösung
> > der homogenen Gleichung bestimmen.  Mit dem Ansatz
> > [mm]e^{\lambda*t}[/mm] komme ich auf die allgemeine Lösung:
> > [mm]c_1*\sin(\omega t)+c_2*\cos(\omega t)[/mm]
>  
> [mm]x_{H}\left(t\right)=c_{1}*\sin\left(\omega t\right)+c_{2}*\cos\left(\omega t\right)[/mm]

Ok, also dies ist meine Lösung der homogenen Gleichung.

>  
>
> >  Wenn ich jetzt

> > versuche die [mm]c_1[/mm] und [mm]c_2[/mm] mit den Anfangsbedingungen zu
> > bestimmen, so komme ich auf [mm]c_1=c_2=0.[/mm] Das kann ja nicht
> > sein....
>
>
> Dazu brauchst Du erst die Lösung der inhomogen DGL.
>  
>
> >
> > Wie komme ich dann außerdem noch auf die Lösung der
> > inhomogenen Gleichung??
>  
>
> Hier mußt Du unterscheiden, ob [mm]\omega = \omega_{A}[/mm] bzw.
> [mm]\omega=\omega_{A}[/mm] ist.
>  
>
> i) [mm]\omega \not= \omega_{A}[/mm]
>    
> [mm]x_{P}\left(t\right)=\alpha*\sin\left(w_{A}t\right)+\beta*\cos\left(\omega_{A}t\right)[/mm]

>
Vielleicht klären wir erstmal diesen ersten Fall. Also ich mache diesen Ansatz. Was ist denn der nächste Schritt den ich machen muss, also wie kann ich [mm] \alpha [/mm] und [mm] \beta [/mm] bestimmen?
Muss ich dazu die partik. Lsg in die Diff-Gleichung einsetzen?

[mm] -\alpha*\omega_A^2*\sin\left(w_{A}t\right)-\beta*\omega_A^2*\cos\left(\omega_{A}t\right)+m\omega^2*x_p(t)=F_0*\cos(\omega_A*t) [/mm]

Ist das überhaupt richtig so?? Wäre nett wenn mir da jemand noch ein paar Tipps geben kann.



  

> ii) [mm]\omega = \omega_{A}[/mm]
>  
> [mm]x_{P}\left(t\right)=\alpha*t*\sin\left(w_{A}t\right)+\beta*t*\cos\left(\omega_{A}t\right)[/mm]
>  
>
> >  

> > Da ich leider die entsprechende Vorlesung nicht besuchen
> > kann, kann ich nur sehr schlecht mit DGL umgehen.
> >
> > Danke für Eure Hilfe.
> > Patrick
>
>
> Gruß
>  MathePower


Bezug
                        
Bezug
DGL harm. Oszillator: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Di 16.12.2008
Autor: MathePower

Hallo XPatrickX,

> Hey  nochmal,
>
> sorry ich komm da immer noch nicht weiter...
>  
>

> > i) [mm]\omega \not= \omega_{A}[/mm]
>  >    
> >
> [mm]x_{P}\left(t\right)=\alpha*\sin\left(w_{A}t\right)+\beta*\cos\left(\omega_{A}t\right)[/mm]
>  >
>  Vielleicht klären wir erstmal diesen ersten Fall. Also ich
> mache diesen Ansatz. Was ist denn der nächste Schritt den
> ich machen muss, also wie kann ich [mm]\alpha[/mm] und [mm]\beta[/mm]
> bestimmen?
> Muss ich dazu die partik. Lsg in die Diff-Gleichung
> einsetzen?
>  


Ja.


> [mm]-\alpha*\omega_A^2*\sin\left(w_{A}t\right)-\beta*\omega_A^2*\cos\left(\omega_{A}t\right)+m\omega^2*x_p(t)=F_0*\cos(\omega_A*t)[/mm]
>  
> Ist das überhaupt richtig so?? Wäre nett wenn mir da jemand
> noch ein paar Tipps geben kann.
>  


[mm]x_{P}\left(t\right)[/mm] mußt ja auch noch einsetzen.

Dann einen []Koeffizientenvergleich durchführen, d.h. die Koeffizienten
auf der linken und rechten Seite vor Sinus und Cosinus miteinander vergleichen.
Daraus erhältst Du dann die Koeffizienten [mm]\alpha, \ \beta[/mm].


>
>
>
> > ii) [mm]\omega = \omega_{A}[/mm]
>  >  
> >
> [mm]x_{P}\left(t\right)=\alpha*t*\sin\left(w_{A}t\right)+\beta*t*\cos\left(\omega_{A}t\right)[/mm]
>  >  
> >


Gruß
MathePower

Bezug
                                
Bezug
DGL harm. Oszillator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Di 16.12.2008
Autor: XPatrickX

Hallo MathePower!

> [mm]x_{P}\left(t\right)=\alpha*\sin\left(w_{A}t\right)+\beta*\cos\left(\omega_{A}t\right)[/mm]
>  >  >
>  >  Vielleicht klären wir erstmal diesen ersten Fall. Also
> ich
> > mache diesen Ansatz. Was ist denn der nächste Schritt den
> > ich machen muss, also wie kann ich [mm]\alpha[/mm] und [mm]\beta[/mm]
> > bestimmen?
> > Muss ich dazu die partik. Lsg in die Diff-Gleichung
> > einsetzen?
>  >  
>
>
> Ja.
>  
>
> >
> [mm]-\alpha*\omega_A^2*\sin\left(w_{A}t\right)-\beta*\omega_A^2*\cos\left(\omega_{A}t\right)+m\omega^2*x_p(t)=F_0*\cos(\omega_A*t)[/mm]
>  >  
> > Ist das überhaupt richtig so?? Wäre nett wenn mir da jemand
> > noch ein paar Tipps geben kann.
>  >  
>
>
> [mm]x_{P}\left(t\right)[/mm] mußt ja auch noch einsetzen.
>  
> Dann einen []Koeffizientenvergleich
> durchführen, d.h. die Koeffizienten
> auf der linken und rechten Seite vor Sinus und Cosinus
> miteinander vergleichen.
>  Daraus erhältst Du dann die Koeffizienten [mm]\alpha, \ \beta[/mm].
>  
>
> >

Ich habe dann folgendes raus:

(sin:)
[mm] -\alpha*\omega_A^2+m\omega^2*\alpha=0 [/mm]
[mm] \Rightarrow [/mm] ... [mm] \Rightarrow \alpha=0 [/mm]

(cos:)
[mm] -\beta*\omega_A^2+m\omega^2*\beta=F_0 [/mm]
[mm] \Rightarrow [/mm] ... [mm] \Rightarrow \beta=\frac{F_0}{m\omega^2-\omega_A^2} [/mm]

Somit ergibt sich als partikuläre Lösung:

[mm] x_p(t)=\frac{F_0}{m\omega^2-\omega_A^2}*\cos(\omega\cdot{}t) [/mm]


Meine Lösung insgesamt lautet dann

[mm] x(t)=x_p(t)+x_h(t) [/mm] und die [mm] c_1 [/mm] und [mm] c_2 [/mm] bestimme ich dann durch meine anfangsbedingungen?

Danke, LG Patrick

Bezug
                                        
Bezug
DGL harm. Oszillator: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Di 16.12.2008
Autor: MathePower

Hallo XPatrickX,

> Hallo MathePower!
>  
> >
> [mm]x_{P}\left(t\right)=\alpha*\sin\left(w_{A}t\right)+\beta*\cos\left(\omega_{A}t\right)[/mm]
>  >  >  >
>  >  >  Vielleicht klären wir erstmal diesen ersten Fall.
> Also
> > ich
> > > mache diesen Ansatz. Was ist denn der nächste Schritt den
> > > ich machen muss, also wie kann ich [mm]\alpha[/mm] und [mm]\beta[/mm]
> > > bestimmen?
> > > Muss ich dazu die partik. Lsg in die Diff-Gleichung
> > > einsetzen?
>  >  >  
> >
> >
> > Ja.
>  >  
> >
> > >
> >
> [mm]-\alpha*\omega_A^2*\sin\left(w_{A}t\right)-\beta*\omega_A^2*\cos\left(\omega_{A}t\right)+m\omega^2*x_p(t)=F_0*\cos(\omega_A*t)[/mm]
>  >  >  
> > > Ist das überhaupt richtig so?? Wäre nett wenn mir da jemand
> > > noch ein paar Tipps geben kann.
>  >  >  
> >
> >
> > [mm]x_{P}\left(t\right)[/mm] mußt ja auch noch einsetzen.
>  >  
> > Dann einen []Koeffizientenvergleich
> > durchführen, d.h. die Koeffizienten
> > auf der linken und rechten Seite vor Sinus und Cosinus
> > miteinander vergleichen.
>  >  Daraus erhältst Du dann die Koeffizienten [mm]\alpha, \ \beta[/mm].
>  
> >  

> >
> > >
> Ich habe dann folgendes raus:
>  
> (sin:)
>  [mm]-\alpha*\omega_A^2+m\omega^2*\alpha=0[/mm]
>  [mm]\Rightarrow[/mm] ... [mm]\Rightarrow \alpha=0[/mm]
>  
> (cos:)
>  [mm]-\beta*\omega_A^2+m\omega^2*\beta=F_0[/mm]
>  [mm]\Rightarrow[/mm] ... [mm]\Rightarrow \beta=\frac{F_0}{m\omega^2-\omega_A^2}[/mm]
>  
> Somit ergibt sich als partikuläre Lösung:
>  
> [mm]x_p(t)=\frac{F_0}{m\omega^2-\omega_A^2}*\cos(\omega\cdot{}t)[/mm]
>  


Korrekt lautet die partikuläre Lösung:

[mm]x_p(t)=\frac{F_0}{m \ \left( \ \omega^2-\omega_A^2 \ \right) \ }*\cos(\omega_{A}\cdot{}t)[/mm]


>
> Meine Lösung insgesamt lautet dann
>
> [mm]x(t)=x_p(t)+x_h(t)[/mm] und die [mm]c_1[/mm] und [mm]c_2[/mm] bestimme ich dann
> durch meine anfangsbedingungen?


So ist es.


>  
> Danke, LG Patrick


Gruß
MathePower

Bezug
                                                
Bezug
DGL harm. Oszillator: Danke :)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 Di 16.12.2008
Autor: XPatrickX

Stimmt, ich habe das m aus der DGL gar nicht mitgenommen. Ich hoffe, den Rest schaffe ich jetzt alleine.

Vielen Dank, MathePower!!

Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]