matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL eindeutig lösbar?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - DGL eindeutig lösbar?
DGL eindeutig lösbar? < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL eindeutig lösbar?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Di 22.02.2011
Autor: ChopSuey

Aufgabe
Untersuchen Sie die Dgl $ y' = [mm] 6x\sqrt[3]{y^2} [/mm] $ auf eindeutige Lösbarkeit.

Moin!

In Vorbereitung auf die Klausuren war das eine Übungsaufgabe, zu der sich mir ein paar Fragen stellten.

Die rechte Seite der Dgl ist stetig, also ist sie lokal lösbar.

Nun wollte ich das Ganze noch auf Lipschitz-Stetigkeit bzgl $ y $ untersuchen.

Es ist $ y' = f(x,y) = [mm] 6x*\sqrt[3]{y^2} [/mm] $ und $ [mm] \dfrac{\partial f(x,y)}{\partial y} [/mm] = [mm] 4xy^{-\frac{1}{3}} [/mm] $

$ f $ ist also bzgl $ y $ in allen Punkten $ [mm] (x_0, y_0) [/mm] $ mit $ [mm] y_0 \not= [/mm] 0 $ stetig partiell differenzierbar. Daraus folgt, dass $ f $ lokal einer Lipschitz-Bedingung genügt.

Nach Picard-Lindelöff existiert also eine eindeutige Lösung der DGL.

Soweit richtig?

Ich war nun auf der Suche nach einer geeigneten Lipschitz-Konstante und war bisher nicht erfolgreich.

Ich möchte zeigen, dass [mm] $\dfrac{\partial f(x,y)}{\partial y} [/mm] = [mm] 4xy^{-\frac{1}{3}}$ [/mm] durch ein $ L [mm] \in \IR [/mm] $ beschränkt ist, so dass ich dieses $ L $ mit Hilfe des Mittelwertsatzes als Lipschitz-konstante wählen kann.

Doch wie geh ich dabei vor? Wird das denn überhaupt klappen?

Freue mich über jede Hilfe!

Grüße
ChopSuey


        
Bezug
DGL eindeutig lösbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Mi 23.02.2011
Autor: fred97

1. $y  [mm] \equiv [/mm] 0$  ist eine Lösung der DGL.


2. Für jedes $c [mm] \in \IR$ [/mm] ist $y(x):= [mm] (2x+c)^3$ [/mm]  eine Lösung der DGL  (Trennung der Variablen)

3. Viel weiter weg von "eindeutige Lösbarkeit" kann eine DGL kaum sein !

4. Mit Picard-Lindelöf brauchst Du bei obiger Aufgabe nicht kommen, denn Du hast kein Anfangswertproblem gegeben.


FRED

Bezug
                
Bezug
DGL eindeutig lösbar?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:50 Mi 23.02.2011
Autor: ChopSuey

Hallo Fred,

prima, vielen Dank für Deine Hilfe!

Viele Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]