matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL aufstellen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - DGL aufstellen
DGL aufstellen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mo 05.07.2010
Autor: Martinius

Aufgabe 1
B-Exercises

...

2.

A rocket has a mass M, which includes a mass m of a fuel mixture. During the burning process the combustion products are discharged at a velocity q > 0 relative to the rocket. This burning involves a loss per second of a mass p of the fuel mixture. Neglecting all external forces except a constant gravitational, show that the maximum theoretical height attained by the rocket is

$ [mm] \bruch{qm}{p}+\bruch{qM}{p}\cdot{}ln\left( \bruch{M-m}{M}\right)+\bruch{q^2}{2g}\cdot{}ln^2\left( \bruch{M-m}{M}\right) [/mm] $

Aufgabe 2
3. In addition to the gravitational force acting on the rocket of Exercise 2, there is a force due to air resistance which is proportional to the instantaneous velocity of the rocket.

(a) Find the velocity of the rocket at any time assuming that its initial velocity is zero.

(b) Determine the height of the rocket at any time.

(c) Find the maximum theoretical height attained.  

Hallo,

es geht um Aufgabe 3. Ich wollte fragen, ob ich die DGL richtig aufgestellt habe.


M : gesamte Raketenmasse

m: Treibstoffmasse

q : const. Geschwindigkeit der Verbrennungsgase relativ zur Rakete in [m/s]

p : Massenstrom in [kg/s]

g = const.


$ [mm] F=m\cdot{}a=F_{Schub}-G-k\cdot{}v [/mm] $

$ [mm] a=\dot v=\bruch{q\cdot{}p}{m}-\bruch{m\cdot{}g}{m}-\bruch{k}{m}\cdot{}v [/mm] $

$ [mm] m=m_{t}=M-p\cdot{}t [/mm] $

$ [mm] \bruch{dv}{dt}=\bruch{q\cdot{}p}{m(t)}-g-\bruch{k}{m(t)}\cdot{}v [/mm] $

$ [mm] \bruch{dv}{dt}=\bruch{q\cdot{}p}{M-p\cdot{}t}-g-\bruch{k}{M-p\cdot{}t}\cdot{}v [/mm] $

$ [mm] \bruch{dv}{dt}=\bruch{q\cdot{}p-k\cdot{}v}{M-p\cdot{}t}-g [/mm] $


Vielen Dank,

LG, Martinius

        
Bezug
DGL aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mo 05.07.2010
Autor: metalschulze

Hallo Martinius,

das sieht richtig aus, aber v=v(t) !

Gruß Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]