matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL Zweikörperproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - DGL Zweikörperproblem
DGL Zweikörperproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Zweikörperproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Do 12.01.2012
Autor: Harris

Hi!

Ich habe das Differentialgleichungssystem
$x''=- [mm] \frac{x}{(x^2+y^2)^\frac{3}{2}},~~~y''=- \frac{y}{(x^2+y^2)^\frac{3}{2}}$ [/mm] gegeben. Hierzu ist die Energie
[mm] $E=\frac{1}{2}((x')^2+(y')^2)- \frac{1}{(x^2+y^2)^\frac{1}{2}}$ [/mm] und das Moment durch $M=xy'-x'y$ gegeben.

Ich soll nun herausfinden, welche Beziehung zwischen $E$ und $M$ erfüllt sein muss, damit $(x,y)$ eine Kreisbahn mit Radius $R>0$ beschreibt.

Hierzu verwende ich Polarkoordinaten [mm] $x=r\cos(\varphi)$ [/mm] und [mm] $y=r\sin(\varphi)$: [/mm]
Heraus kommt (nach meinen Rechnungen
[mm] $E=\frac{1}{2}(r'^2+r^2\varphi'^2)-\frac{1}{r}$ [/mm] und [mm] $M=r^2\varphi'$ [/mm]

Nun soll $r=R$ konstant sein, so dass herauskommt
[mm] $E=\frac{1}{2}R^2\varphi'^2-\frac{1}{R}=\frac{M^2}{2R^2}-\frac{1}{R}$ [/mm]

Nun meine Fragen:
a) Stimmen die Rechnungen und das Ergebnis soweit, oder will der Aufgabensteller ein anderes Ergebnis?
b) Ist das nicht falschrum? Habe ich hier nicht gezeigt, dass wenn eine Kreisbahn beschrieben wird, dass dann dieser Zusammenhang bestehen muss? Oder sind diese beiden Aussagen äquivalent?

Gruß, Harris

        
Bezug
DGL Zweikörperproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Do 12.01.2012
Autor: leduart

Hallo
du hast es richtig gemacht, physikalisch zumondest da ja gilt M was ich drehimpuls und nicht Moment nennen würde und E sind konstant, also muss bei r=const auch [mm] \phi'=const [/mm] gelten
und damit sind die aussagen äquivalent.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]