matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL Trennung d. Variable
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - DGL Trennung d. Variable
DGL Trennung d. Variable < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Trennung d. Variable: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:35 Sa 26.01.2013
Autor: mike1988

Aufgabe
Lösen Sie die gegebene Differentialgleichung durch Trennung der Variablen:

[mm] m*\ddot{y} [/mm] = [mm] -m*g-k*\dot{y^{2}} [/mm]

Hallo liebes Forum!

Würde bitte dringend eure Unterstützung bei o. g. Aufgabe benötigen!

Ich bin mal wie folgt vorgegangen:

[mm] \ddot{y}=\bruch{d\dot{y}}{dt}=\bruch{d\dot{y}}{dy}*\bruch{d{y}}{dt}=\bruch{d\dot{y}}{dy}*\dot{y} [/mm]

Eingesetzt ergibt dies:

[mm] m*\bruch{d\dot{y}}{dy}*\dot{y}+k*\dot{y}^{2} [/mm] = -m*g

Nun habe ich versucht, auf der linken Seite das [mm] \dot{y} [/mm] herauszuheben, was mir allerdings nicht gelingt, da es einmal in erster und einmal in zweiter Potenz vorhanden ist!

Kann mit diesbezüglich jemand einen Tipp zur Vorgehensweise geben??


Vielen lieben Dank!

Lg

        
Bezug
DGL Trennung d. Variable: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Sa 26.01.2013
Autor: Richie1401

Hallo,

du kannst zunächst [mm] \dot{y}(x)=:z(x) [/mm] substituieren und diese DGL dann lösen, und dann wieder rücksubstituieren. Das ist vermutlich die beste und schnellste Variante.

Grüße

Bezug
                
Bezug
DGL Trennung d. Variable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Sa 26.01.2013
Autor: mike1988

Hallo Richie!

Vielen Dank für deine rasche Antwort, nur leider verstehe ich dies nicht so ganz!

Wenn ich  $ [mm] \dot{y}(x)=:z(x) [/mm] $ substituiere dan erhalte ich ja:

$ [mm] m\cdot{}\bruch{d\dot{y}}{dy}\cdot{}z+k\cdot{}z^{2} [/mm] = [mm] -m\cdot{g} [/mm]  $

Hilft mir ja auch nicht sonderlich weiter!





Bezug
                        
Bezug
DGL Trennung d. Variable: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Sa 26.01.2013
Autor: Richie1401

Hallo,

nein, gehe von deiner ursprünglichen DGL aus:

[mm] m\ddot{y}=-mg-k\dot{y}^2 [/mm]

Dann erhältst du:

[mm] m\dot{z}\equiv m\frac{dz}{dt}=-mg-kz^2 [/mm]

Dividieren der Gleichung durch m und eventuelle Setzen von [mm] \omega=\frac{k}{m} [/mm] lässt die DGL schon einmal freundliche ausschauen.

[mm] \dot{z}=-g-\omega z^2 [/mm]   (*)

Löse (*) nun durch Trennung der Variablen. Hast du dies gemacht, so stelle so um, dass du eine Gleichung der Form z(t)=... da stehen hast, um dann y(t) durch triviale Integration von z(t) zu erhalten.

Bezug
                                
Bezug
DGL Trennung d. Variable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Sa 26.01.2013
Autor: mike1988

Danke für deine tolle und ausführliche Erklärung!

Ich habe nun die Gleichung [mm] \integral{dt} [/mm] = [mm] \integral{\bruch{dz}{-g-w \cdot{z^{2}}}} [/mm]

Wenn ich diese Gleichung nun beidseitig integriere erhalte ich:

t = [mm] \bruch{-arctan(\bruch{z \cdot{} \wurzel{w}}{\wurzel{g}})}{\wurzel{g} \cdot{} \wurzel{w}} [/mm]

Dies auf z umgeformt ergibt:

z = [mm] \bruch{\wurzel{g}}{\wurzel{w}} \cdot{} tan(t\cdot{}\wurzel{g}\cdot{}\wurzel{w}) [/mm]

Da wir ja oben [mm] \dot{y}=z [/mm] substituiert haben, folgt:

[mm] \bruch{dy}{dt}= \bruch{\wurzel{g}}{\wurzel{w}} \cdot{} tan(t\cdot{}\wurzel{g}\cdot{}\wurzel{w}) [/mm]


dy= [mm] \bruch{\wurzel{g}}{\wurzel{w}} \cdot{} tan(t\cdot{}\wurzel{g}\cdot{}\wurzel{w})\cdot{} [/mm] dt

und somit:

[mm] y_{t}=\bruch{\wurzel{g}\cdot{}\wurzel{w}}{(cos(t\cdot{}\wurzel{g}\cdot{}\wurzel{w})^{2}} [/mm]

Ist dies korrekt oder habe ich nochmals etwas falsch verstanden??

DANKE! Lg

Bezug
                                        
Bezug
DGL Trennung d. Variable: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Sa 26.01.2013
Autor: Richie1401

Hi,

soweit wirklich alles gut gemacht. Sieht natürlich shcon ein bisschen hässlich aus, mit den [mm] \sqrt{k}/\sqrt{m}. [/mm] Also schöner ist es [mm] \sqrt{k/m}. [/mm] Aber ok.

So, und dann ist [mm] \int\tan{x}dx=-\ln{\cos{x}}+c. [/mm]

Du kannst das Integral auch notfalls einfach in Wolfram-Alpha/Mathematica reinhacken. Da hast du dann eine schnelle Kontrolle.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]