matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL Mechanik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - DGL Mechanik
DGL Mechanik < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Mechanik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mo 13.10.2014
Autor: Killercat

Aufgabe
Ein zum Zeitpunkt
t=0
vom Nullpunkt aus mit der Geschwindigkeit v
unter dem Steigungswinkel [mm] \phi [/mm]
geworfener Gegenstand der Masse M
beschreibt unter dem Einfluß der
Erdbeschleunigung g=9,81m/s² eine Bahn (x(t),y(t)), welche durch die Gleichung:
[mm]M*\frac {d^2}{dt^2}(x(t),y(t)) = (0;-Mg)[/mm] beschrieben wird.
1)Finde x(t),y(t)
2)Berechne die Wurfweite
3)Sei v gegeben. Für welchen Winkel Phi ist die Wurfweite maximal


Guten Abend,

ich hänge etwas bei dieser Aufgabe, da ich a) kein Physikfan bin und b) Aufgaben von diesem Typ bei uns in der Grundlagenvorlesung nicht drankamen.

Bisher hab ich mir überlegt, daraus folgendes System zu machen:
I: [mm]m*x''(t) = 0 [/mm]
II: [mm]y''(t) = -g [/mm]
Das System würde man durch integrieren lösen, was bei der zweiten Gleichung ja kein Problem ist, was mir jetzt im ersten Schritt aber Probleme macht ist der Faktor [mm]mx''[/mm] Nach gängigen Regeln der Integration müsste das ja [mm] (x')^m[/mm] sein.

Vielen Dank schonmal
Tobias


        
Bezug
DGL Mechanik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Mo 13.10.2014
Autor: wauwau

M ist doch die Masse un daher von t unabhängig als Konstante zu betrachten!

Bezug
        
Bezug
DGL Mechanik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:15 Di 14.10.2014
Autor: chrisno

Hallo Tobias,

ich habe Deinen Quellcode bearbeitet um die fehlenden Quadrate sichtbar zu machen.


Bezug
        
Bezug
DGL Mechanik: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Di 14.10.2014
Autor: fred97


> Ein zum Zeitpunkt
>  t=0
>  vom Nullpunkt aus mit der Geschwindigkeit v
>  unter dem Steigungswinkel [mm]\phi[/mm]
>  geworfener Gegenstand der Masse M
>  beschreibt unter dem Einfluß der
>  Erdbeschleunigung g=9,81m/s² eine Bahn (x(t),y(t)),
> welche durch die Gleichung:
>  [mm]M*\frac {d^2}{dt^2}(x(t),y(t)) = (0;-Mg)[/mm] beschrieben
> wird.
>  1)Finde x(t),y(t)
>  2)Berechne die Wurfweite
>  3)Sei v gegeben. Für welchen Winkel Phi ist die Wurfweite
> maximal
>  
> Guten Abend,
>  
> ich hänge etwas bei dieser Aufgabe, da ich a) kein
> Physikfan bin und b) Aufgaben von diesem Typ bei uns in der
> Grundlagenvorlesung nicht drankamen.
>  
> Bisher hab ich mir überlegt, daraus folgendes System zu
> machen:
>  I: [mm]m*x''(t) = 0[/mm]
>  II: [mm]y''(t) = -g[/mm]
>  Das System würde man
> durch integrieren lösen, was bei der zweiten Gleichung ja
> kein Problem ist, was mir jetzt im ersten Schritt aber
> Probleme macht ist der Faktor [mm]mx''[/mm] Nach gängigen Regeln
> der Integration müsste das ja [mm](x')^m[/mm] sein.

Uuaa ! Das ist keine gängige sondern eine absolut abenteuerliche Regel (völliger Unsinn !).

Da  die Konstante m=M [mm] \ne [/mm] 0 ist, folgt aus  [mm]m*x''(t) = 0[/mm]:

(*)    [mm]x''(t) = 0[/mm].

Bestimme also zunächst alle Funktionen x für die (*) gilt.

FRED

>  
> Vielen Dank schonmal
>  Tobias
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]