matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL Eindeutigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - DGL Eindeutigkeit
DGL Eindeutigkeit < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Eindeutigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:57 Di 22.06.2010
Autor: steppenhahn

Aufgabe
Gegeben seien folgende zwei AWA:
a) $u'(t) = [mm] [u(t)]^{1/4}$, $t\ge [/mm] 0$, $u(0) = 1$
b) $u'(t) = [mm] -\sin(t)*[u(t)]^{2}$, $t\ge [/mm] 0$, $u(0) = 1$
Man begründe, dass dies die einzigen Lösungen sind. Was passiert (mit der Eindeutigkeit), wenn $u(0) = 0$ die Anfangsbedingung ist?

Hallo!

Ich würde gern eure Meinung zu meinen beiden fett markierten Fragen hören :-)
Mit Hilfe der Methode der Trennung der Variablen konnte ich jeweils Lösungen bestimmen:

Zu a): $u(t) = [mm] \Big(\frac{3}{4}*t+1\Big)^{4/3}$ [/mm]

Zu b): $u(t) = [mm] \frac{1}{2-\cos(t)}$ [/mm]

Bei der Methode der Trennung der Variablen musste ich immer annehmen, dass [mm] $u(t)\not= [/mm] 0$ für alle [mm] $t\ge [/mm] 0$ ist. Deswegen kann ich jetzt nicht behaupten, dass dies die einzigen (und damit eindeutigen) Lösungen sind.

Ich weiß, dass ich die Eindeutigkeit unter anderem mit der lokalen Lipschitz-Stetigkeit von
a) $f(x,y) = [mm] y^{1/4}$ [/mm] (wobei y nicht bei 0 liegen darf) und
b) $f(x,y) = [mm] -\sin(x)*y^{2}$ [/mm]
und damit, dass die gefundenen Lösungen nicht in einem beschränkten Intervall unendlich groß werden, begründen kann (Folgt aus einem Satz des Skripts). Gibt es auch einen elementareren Weg dafür (denn evtl. liegt mir dieses Resultat noch nicht vor...) ?

----------

Wenn $u(0) = 0$ ist, erhalte ich

a) $u(t) = [mm] \Big(\frac{3}{4}*t\Big)^{4/3}$. [/mm] Allerdings kann jetzt auch die Nullfunktion $u(0) = 0$ eine Lösung sein. Ich habe also keine Eindeutigkeit mehr. Das Argument von oben über die Eindeutigkeit funktioniert nicht mehr, weil $f(x,y) = [mm] y^{1/4}$ [/mm] nicht in 0 lokal L-stetig ist.

b) Mit dem Verfahren der Trennung der Variablen erhalte ich keine Lösung (Ich muss ein Integral [mm] $\int_{0}^{u(t)}\frac{1}{z^{2}} [/mm] dz$ berechnen). Allerdings sehe ich, dass die Nullfunktion $u(t) = 0$ ein Lösung ist. Müsste diese nicht weiterhin eindeutige Lösung sein ($f(x,y) = [mm] -\sin(x)*y^{2}$ [/mm] ist ja überall lokal L-stetig...) ?

Vielen Dank für Eure Hilfe!
Grüße,
Stefan

        
Bezug
DGL Eindeutigkeit: Aufgabe a)
Status: (Antwort) fertig Status 
Datum: 22:31 Di 22.06.2010
Autor: MathePower

Hallo steppenhahn,

> Gegeben seien folgende zwei AWA:
>  a) [mm]u'(t) = [u(t)]^{1/4}[/mm], [mm]t\ge 0[/mm], [mm]u(0) = 1[/mm]
>  b) [mm]u'(t) = -\sin(t)*[u(t)]^{2}[/mm],
> [mm]t\ge 0[/mm], [mm]u(0) = 1[/mm]
>  Man begründe, dass dies die einzigen
> Lösungen sind. Was passiert (mit der Eindeutigkeit), wenn
> [mm]u(0) = 0[/mm] die Anfangsbedingung ist?
>  Hallo!
>  
> Ich würde gern eure Meinung zu meinen beiden fett
> markierten Fragen hören :-)
>  Mit Hilfe der Methode der Trennung der Variablen konnte
> ich jeweils Lösungen bestimmen:
>  
> Zu a): [mm]u(t) = \Big(\frac{3}{4}*t+1\Big)^{4/3}[/mm]
>  
> Zu b): [mm]u(t) = \frac{1}{2-\cos(t)}[/mm]
>  
> Bei der Methode der Trennung der Variablen musste ich immer
> annehmen, dass [mm]u(t)\not= 0[/mm] für alle [mm]t\ge 0[/mm] ist. Deswegen
> kann ich jetzt nicht behaupten, dass dies die einzigen (und
> damit eindeutigen) Lösungen sind.
>  
> Ich weiß, dass ich die Eindeutigkeit unter anderem mit der
> lokalen Lipschitz-Stetigkeit von
>  a) [mm]f(x,y) = y^{1/4}[/mm] (wobei y nicht bei 0 liegen darf) und
>  b) [mm]f(x,y) = -\sin(x)*y^{2}[/mm]
>  und damit, dass die gefundenen
> Lösungen nicht in einem beschränkten Intervall unendlich
> groß werden, begründen kann (Folgt aus einem Satz des
> Skripts). Gibt es auch einen elementareren Weg dafür (denn
> evtl. liegt mir dieses Resultat noch nicht vor...) ?
>  


Durch Trennung der Variablen und anschließender Integration
erhält man zunächst

[mm]\bruch{4}{3}*\wurzel[4]{u^{3}}=t+C[/mm]

Da die linke Seite stets größer oder gleich Null ist,
erhält man hier Lösungen für [mm]t \in \left]-C, \infty\right[[/mm]

Die Bedingung [mm]t \ge 0[/mm] impliziert [mm]C \le 0[/mm].
Das Intervall ist hier für C < 0 eingeschränkt,
somit kann die Anfangsbedingung nicht erfüllt werden.

Daraus ergibt sich, daß Lösungen für [mm]t \in \left[0, \infty\right[[/mm]
nur existieren, wenn [mm] C \ge [/mm] 0 ist.


> ----------
>  
> Wenn [mm]u(0) = 0[/mm] ist, erhalte ich
>
> a) [mm]u(t) = \Big(\frac{3}{4}*t\Big)^{4/3}[/mm]. Allerdings kann
> jetzt auch die Nullfunktion [mm]u(0) = 0[/mm] eine Lösung sein. Ich
> habe also keine Eindeutigkeit mehr. Das Argument von oben
> über die Eindeutigkeit funktioniert nicht mehr, weil
> [mm]f(x,y) = y^{1/4}[/mm] nicht in 0 lokal L-stetig ist.


>  
> Vielen Dank für Eure Hilfe!
>  Grüße,
>  Stefan


Gruss
MathePower

Bezug
        
Bezug
DGL Eindeutigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 24.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]