matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL 1. Ordung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - DGL 1. Ordung
DGL 1. Ordung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1. Ordung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:02 Mi 13.09.2006
Autor: Tequilla

[Dateianhang nicht öffentlich]
Hallo!
Hier geht es um DGLs 1. Ordung:

allegmeine frage:

Wie wählt man die Konstanten C? Z.B wenn ich das Integral
[mm] \integral_{}^{}{\bruch{1}{x} dx} [/mm] habe und dann es ausrechne, dann füge ich nach dem rechenvorgan noch eine Konstate C hinzu.
Dann kommt raus ln(x)+C raus. Doch in der rechnung bei der a) habe wir das C in das ln eingesetzt. Also so: ln(x+C)
Das ist für mich was anderes als das da vor. Kann mir das vielleicht einer erklären?

2. Frage. Welche Substitution sollte man bei b) verwenden? ich habe es mit [mm] \bruch{y^{2}}{x} [/mm] versucht, aber wird sehr unangenehm.


danke schon im voraus!

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
DGL 1. Ordung: Logarithmusgesetz
Status: (Antwort) fertig Status 
Datum: 08:51 Mi 13.09.2006
Autor: Loddar

Hallo Tequilla!



> Wie wählt man die Konstanten C? Z.B wenn ich das Integral
> [mm]\integral_{}^{}{\bruch{1}{x} dx}[/mm] habe und dann es
> ausrechne, dann füge ich nach dem rechenvorgan noch eine
> Konstate C hinzu.
> Dann kommt raus ln(x)+C raus. Doch in der rechnung bei der
> a) habe wir das C in das ln eingesetzt. Also so: ln(x+C)

Das soll aber bestimmt [mm] $\ln(x\red{\times}C)$ [/mm] heißen (also mit Multiplikation), oder?


> Das ist für mich was anderes als das da vor. Kann mir das
> vielleicht einer erklären?

Das ist im Prinzip egal, wie Du das machst. Bei der genannten Lösung sparst Du allerdings ein/zwei Umformungsschritte. Denn Du kannst eine Variante in die andere überführen durch Anwendung eines MBLogarithmusgesetzes [mm] $\log_b(x)+\log_b(y) [/mm] \ = \ [mm] \log_b(x*y)$ [/mm] :

[mm] $\ln(x) [/mm] + C \ = \ [mm] \ln(x)+\ln\left(e^C\right) [/mm] \ = \ [mm] \ln\left(x*e^C\right)$ [/mm]

Da auch [mm] $e^C$ [/mm] wieder konstant ist, kann man abkürzen zu: [mm] $C^\star [/mm] \ := \ [mm] e^C$ [/mm] . Damit wird dann: [mm] $\ln\left(x*e^C\right) [/mm] \ = \ [mm] \ln\left(x*C^\star\right)$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
DGL 1. Ordung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 13.09.2006
Autor: Tequilla

Und nochmals danke Loddar;-)

Und hast damit recht, dass da eine multipilkation sein sollte. Der Prof hat sich da einen Flüchtigkeitsfehler erlaubt.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]