matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL 1. Ordnung lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - DGL 1. Ordnung lösen
DGL 1. Ordnung lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1. Ordnung lösen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:15 Di 27.04.2010
Autor: keksdose

Hoffentlich habe ich alle Regeln beachtet...
Es geht um die DGL:

y'=k(x0-y)

Wie kann ich sie lösen? Mein Lösungsansatz war die Trennung der Veränderlichen und dann die Variation der Konstanten. Anscheinend ist aber zumindest letzteres nicht nötig.
Jedenfalls kriege ich die Aufgabe nicht hin. (AW ist gegeben)

Mir reicht eine grobe Lösungsskizze. Habe auch schon in Büchern und im Internet Hilfe gesucht, aber nichts Brauchbares gefunden. Anscheinend ist die Aufgabe total einfach...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
DGL 1. Ordnung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 27.04.2010
Autor: steppenhahn

Hallo,

sind k und x0 in deiner Darstellung beides Konstanten?

Grüße,
Stefan

Bezug
                
Bezug
DGL 1. Ordnung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Di 27.04.2010
Autor: keksdose

Jap, das sind beides Konstanten.

Bezug
        
Bezug
DGL 1. Ordnung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Di 27.04.2010
Autor: schachuzipus

Hallo keksdose,

> Hoffentlich habe ich alle Regeln beachtet...
>  Es geht um die DGL:
>  
> y'=k(x0-y)
>  
> Wie kann ich sie lösen? Mein Lösungsansatz war die
> Trennung der Veränderlichen [ok] und dann die Variation der
> Konstanten. Anscheinend ist aber zumindest letzteres nicht
> nötig.
>  Jedenfalls kriege ich die Aufgabe nicht hin. (AW ist
> gegeben)
>  
> Mir reicht eine grobe Lösungsskizze. Habe auch schon in
> Büchern und im Internet Hilfe gesucht, aber nichts
> Brauchbares gefunden. Anscheinend ist die Aufgabe total
> einfach...

Jo, es ist [mm] $y'=k\cdot{}(x_0-y)$ [/mm]

[mm] $\Rightarrow -\frac{1}{y-x_0} [/mm] \ [mm] \frac{dy}{dx}=k$ [/mm]

[mm] $\Rightarrow -\frac{1}{y-x_0} [/mm] dy \ = \ k \ dx$

Nun beidseitig integrieren:

[mm] $\Rightarrow -\ln|y-x_0|=kx+c$ [/mm]

Nun löse mal nach y auf ...

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


LG

schachuzipus

Bezug
                
Bezug
DGL 1. Ordnung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Di 27.04.2010
Autor: keksdose

Danke, ich habe mich total in der Aufgabe verirrt, weil ich einen falschen Ansatz hatte. Jetzt ist es easy. Merci!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]