matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGLSystem: Lsg finden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - DGLSystem: Lsg finden
DGLSystem: Lsg finden < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGLSystem: Lsg finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Do 27.07.2006
Autor: flobaho

Aufgabe
Gegeben ist das Differentialgleichungssystem

[mm]\dot x= \alpha x+2\beta y[/mm]
[mm]\dot y= 2\beta x+\alpha y[/mm]

Für welche reellen [mm] \alpha[/mm] und [mm] \beta[/mm] ust der Gleichgewichtspunkt (0,0) stabil oder asymptotisch stabil? Man gebe die entsprechenden Lösungen für x und y an.

Hinweis: [mm] \beta[/mm]=0 ist ein Sonderfall.

Mit dem charakteristischen Polynom habe ich als Resultate für die Eigenwerte erhalten:  [mm] \lambda 1,\lambda 2 = \alpha \pm \beta[/mm]

Daraus kann ich Bedingungen für  [mm] \alpha[/mm]  und [mm] \beta [/mm] herleiten, so dass die Stabilitätsbedingugen ([mm] \lambda 1,\lambda 2 \le 0 [/mm]) erfüllt sind: [mm] \alpha < 0[/mm] und [mm] |\beta | \le |\alpha|[/mm] (ob dies stimm, weiss ich jedoch nicht).

Völlig unklar ist mir nun, wie ich daraus x und y herleiten kann...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
DGLSystem: Lsg finden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Do 27.07.2006
Autor: Event_Horizon

Du hast doch eine Gleichung der Art [mm] $\dot{\vec z}=A \vec [/mm] z$ da stehen.

Die Eigenwerte hast du schon berechnet, also kannst du auch die Eigenvektoren von A bestimmen, und kannst dann im Eigenvektorraum [mm] $\dot{\vec z}'=A \vec [/mm] z'$ schreiben, wobei A' nun eine Diagonalmatrix mit den Eigenwerten drin ist.

Auf diese Weise werden beide DGLs entkoppelt, und du hast nur noch zwei einzelne Gleichungen da stehen, die sich leicht mit dem Exponentialansatz lösen lassen.

Aus den Eigenvektoren machst du dir dann eine Transformationsmatrix, welche aus dem Eigenvektorraum in den Normalraum transformiert. Diese wendest du auf deine Lösungen z' an und erhälst die Lösungen z.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]