matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - DGL
DGL < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL: Eindeutigkeit der Lösung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:57 Fr 01.04.2005
Autor: Fibonacchi

Meine sonst so frucht- und lustbare Bettgenossin Urania hat mich verlassen:

Offensichtlich führt k=0 intuitiv schnell auf die- wie ich vermute-, der Form halber aber einer Lösung folgender -es will mir die Schamröte ins Gesicht schießen-DGL:

[mm] \bruch{\partial}{\partial c_{n}}(\integral_{-\pi}^{\pi}{|f(x)|^{2}dx}- \summe_{n=-k}^{k}(\overline{c_{n}}\integral_{-\pi}^{\pi}{\bruch{f(x)}{exp(inx)}dx})-\summe_{n=-k}^{k}(c_{n}\integral_{-\pi}^{\pi}{\overline{f(x)}exp(inx)dx})+2\pi\summe_{n=-k}^{k}(c_{n}\overline{c_{n}}))=-\summe_{n=-k}^{k}(\bruch{\partial\overline{c_{n}}}{\partial c_{n}}\integral_{-\pi}^{\pi}{\bruch{f(x)}{exp(inx)}dx})- \summe_{n=-k}^{k}(\integral_{-\pi}^{\pi}{\overline{f(x)}exp(inx)dx})+2\pi\summe_{n=-k}^{k}(\overline{c_{n}}+c_{n}\bruch{\partial\overline{c_{n}}}{\partial c_{n}})=0 [/mm]

nämlich:   [mm] \overline{c_{n}}=\bruch{1}{2\pi}\integral_{-\pi}^{\pi}{ \overline{f(x)}exp(inx))dx} \Rightarrow c_{n}=\bruch{1}{2\pi}\integral_{-\pi}^{\pi}{\bruch{f(x)}{exp(inx)}dx} [/mm]

In der Hoffnung, jemanden zu finden, der mir bezüglich der etwaigen Eindeutigkeit dieser Lösung inspirierend unter die Arme greifen könnte.

P.S.: De mortuis nil nisi boni.

        
Bezug
DGL: nachgefragt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:41 Sa 09.04.2005
Autor: banachella

Hallo Fibonacci!

Leider ist es ziemlich anstrengend aus deiner Frage herauszufinden, was du eigentlich wissen willt. Was ist denn überhaupt deine gegebene DGL?!
Ich würde dir gerne weiterhelfen, wenn ich kann, aber damit kann ich nicht allzuviel anfangen...

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]