matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenDGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentialgleichungen" - DGL
DGL < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:41 Di 26.08.2014
Autor: Babybel73

Hallo zusammen

Ich soll die DGL y'=y*sin(2x) lösen.

Dies habe ich wie folgt gemacht:

Es gilt: sin(2x)=2*cos(x)*sin(x)
Nach Satz vom Skript gilt: [mm] \integral{\bruch{1}{y} dy }=\integral{2*cos(x)*sin(x) dx } [/mm]

So nun habe ich das Integral [mm] \integral{2*cos(x)*sin(x) dx } [/mm] gelöst in dem ich die Substitution u=sin(x) angewendet habe.
Dies ergibt [mm] \integral{ 2*cos(x)*sin(x) dx } [/mm] = [mm] sin^2(x)+C [/mm]

Zurück zur DGL:
[mm] ln(y)=sin^2(x)+C \gdw y=e^{sin^2(x)+C}=e^{sin^2(x)}*C [/mm]

Mein Problem ist nun, dass WolframAlpha das Resultat [mm] y=e^{-\bruch{1}{2}*cos(2x)}*C [/mm] berechnet.

Wo liegt also mein Fehler?


        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Di 26.08.2014
Autor: MathePower

Hallo Babybel73,

> Hallo zusammen
>
> Ich soll die DGL y'=y*sin(2x) lösen.
>
> Dies habe ich wie folgt gemacht:
>
> Es gilt: sin(2x)=2*cos(x)*sin(x)
>  Nach Satz vom Skript gilt: [mm]\integral{\bruch{1}{y} dy }=\integral{2*cos(x)*sin(x) dx }[/mm]
>  
> So nun habe ich das Integral [mm]\integral{2*cos(x)*sin(x) dx }[/mm]
> gelöst in dem ich die Substitution u=sin(x) angewendet
> habe.
>  Dies ergibt [mm]\integral{ 2*cos(x)*sin(x) dx }[/mm] = [mm]sin^2(x)+C[/mm]
>  
> Zurück zur DGL:
> [mm]ln(y)=sin^2(x)+C \gdw y=e^{sin^2(x)+C}=e^{sin^2(x)}*C[/mm]
>
> Mein Problem ist nun, dass WolframAlpha das Resultat
> [mm]y=e^{-\bruch{1}{2}*cos(2x)}*C[/mm] berechnet.
>
> Wo liegt also mein Fehler?
>


Ein Fehler liegt nicht vor, vielmehr ist bei
WolframAlpha die rechte Seite direkt integiert worden:

[mm]\integral{ sin(2x) \ dx } = -\bruch{1}{2}\cos\left(2x\right)+C[/mm]

Es gilt doch:

[mm]\cos\left(2*x\right)=\cos^{2}\left(x\right)-\sin^{2}\left(x\right)=1-2*\sin^{2}\left(x\right)=2*\cos^{2}\left(x\right)-1[/mm]

Damit ist auch klargestellt, daß Deine Lösung auch richtig ist.


Gruss
MathePower

Bezug
                
Bezug
DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 Di 26.08.2014
Autor: Babybel73

Hallo MathePower

$ [mm] \cos\left(2\cdot{}x\right)=\cos^{2}\left(x\right)-\sin^{2}\left(x\right)=1-2\cdot{}\sin^{2}\left(x\right)=2\cdot{}\cos^{2}\left(x\right)-1 [/mm] $

Ach so, dann ist aber die Konstante C & D von [mm] y(x)=C*e^{-0.5*cos(x)} [/mm] & [mm] y(x)=D*e^{sin(x)^2} [/mm] eine andere.

Vielen Dank für deine Antwort.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]