matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL. 2. Ordnung mit Störung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - DGL. 2. Ordnung mit Störung
DGL. 2. Ordnung mit Störung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL. 2. Ordnung mit Störung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Di 16.02.2010
Autor: Baumkind

Aufgabe
[mm] $y''-3y'+2y=\frac{1}{1+e^{-x}}$ [/mm]

Huhu.
Ich habe hier obige Dgl 2. Ordnung. Mein Frage dazu ist, wie ich auf die spezielle Lsg der inhomogenen Gleichung komme?
Wäre gut, wenn ihr mir ein paar Tipps geben könnt, wie man bei (beliebigen) Störungsfunktionen Lsg. findet.

        
Bezug
DGL. 2. Ordnung mit Störung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Di 16.02.2010
Autor: MathePower

Hallo Baumkind,

> [mm]y''-3y'+2y=\frac{1}{1+e^{-x}}[/mm]
>  Huhu.
>  Ich habe hier obige Dgl 2. Ordnung. Mein Frage dazu ist,
> wie ich auf die spezielle Lsg der inhomogenen Gleichung
> komme?
>  Wäre gut, wenn ihr mir ein paar Tipps geben könnt, wie
> man bei (beliebigen) Störungsfunktionen Lsg. findet.


Bei einer DGL 2. Ordnung bietet sich zunächst an,
diese in ein System von DGLn 1. Ordnung umzuwandeln,
damit dann für das inhomogene System, die Methode der
Variation der Konstanten angewendet werden kann.

Natürlich muss zunächst die Lösung des
homogenen Systems bestimmt werden.


Gruss
MathePower

Bezug
        
Bezug
DGL. 2. Ordnung mit Störung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Di 16.02.2010
Autor: mathestudent25

gibt drei gängige methoden:
wie schon erwähnt variation der konstanten,
d'alembertsches reduktionsverfahren,
oder mein favorit ansatzmethode ;)

Bezug
        
Bezug
DGL. 2. Ordnung mit Störung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Di 16.02.2010
Autor: Baumkind

Also als System 1. Ordnung sieht das dann so aus:
[mm] $$\vektor{y'_1 \\ y'_2}=\pmat{ 0 & 1 \\ -2 & 3 }\cdot \vektor{y_1 \\ y_2}+\vektor{0 \\ \frac{1}{1+e^{-x}}}$$ [/mm]
Mit homogener Lsg.:
[mm] $y_{hom}=C\cdot \exp(x\cdot \pmat{ 0 & 1 \\ -2 & 3 })$ [/mm] mit C 2x2-Matrix.
(Habe jetzt exp(..) nicht extra ausgeschrieben, ist nicht so nen schöner Ausdruck).
Wie genau fkt. jetzt hier Variation der Konstanten?

Bezug
                
Bezug
DGL. 2. Ordnung mit Störung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Di 16.02.2010
Autor: MathePower

Hallo Baumkind,

> Also als System 1. Ordnung sieht das dann so aus:
>  [mm]\vektor{y'_1 \\ y'_2}=\pmat{ 0 & 1 \\ -2 & 3 }\cdot \vektor{y_1 \\ y_2}+\vektor{0 \\ \frac{1}{1+e^{-x}}}[/mm]
>  
> Mit homogener Lsg.:
>  [mm]y_{hom}=C\cdot \exp(x\cdot \pmat{ 0 & 1 \\ -2 & 3 })[/mm] mit C
> 2x2-Matrix.
> (Habe jetzt exp(..) nicht extra ausgeschrieben, ist nicht
> so nen schöner Ausdruck).
>  Wie genau fkt. jetzt hier Variation der Konstanten?


Dazu sei die Lösung des obigen homogenen Systems gegeben durch

[mm]\pmat{y_{h1} \\ y_{h2}}=C_{1}*v_{1}*e^{\lambda_{1}*x}+C_{2}*v_{2}*e^{\lambda_{2}*x}[/mm]

,wobei [mm]v_{1}[/mm] der Eigenvektor zum Eigenwert [mm]\lambda_{1}[/mm]

und [mm]v_{2}[/mm] der Eigenvektor zum Eigenwert [mm]\lambda_{2}[/mm]

bedeuten.


Die Variation der Konstanten sagt jetzt,
mache die Konstanten von x abhängig.

Dann lautet der Ansatz:

[mm]\pmat{y_{p1} \\ y_{p2}}=C_{1}\left(x\right)*v_{1}*e^{\lambda_{1}*x}+C_{2}\left(x\right)*v_{2}*e^{\lambda_{2}*x}[/mm]

Diesen setzt Du jetzt in das inhomogene System ein.

Dann erhältst Du ein Gleichungssystem für [mm]C_{1}', \ C_{2}'[/mm]


Gruss
MathePower

Bezug
                        
Bezug
DGL. 2. Ordnung mit Störung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Di 16.02.2010
Autor: mathestudent25

ganz genau .... und dann kann man es einfach mit zb der cramerschen regel lösen ... kommt ein langes ergebnis raus ...

weisst du, MathePower, wie ein ansatz für $1/(1+exp(x)$ gehen könnte?
ich habs auch nur mt variation der konstanten lösen können.

Bezug
                        
Bezug
DGL. 2. Ordnung mit Störung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 Di 16.02.2010
Autor: Baumkind

Ich habe jetzt: [mm] $C_1(x)=ln(e^x+1)-x-\frac{1}{e^x}$ [/mm] und [mm] $C_2(x)=0$. [/mm]
Scheint aber falsch zu sein, denn die Probe stimmt bei mir nicht....

Kurz noch zu meinem Weg:
Ich habe [mm] $y_p$ [/mm] in [mm] $y'=A\cdot [/mm] y +b$ eingesetzt, dann [mm] $y'_p-A\cdot y_p=b$ [/mm] betrachtet, so kam ich auf obige Lsg.

Bezug
                                
Bezug
DGL. 2. Ordnung mit Störung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Di 16.02.2010
Autor: mathestudent25

mein [mm] C_2 [/mm] ist x-ln(exp(x)+1)

Bezug
                                        
Bezug
DGL. 2. Ordnung mit Störung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mi 17.02.2010
Autor: Baumkind

Das habe ich jetzt auch raus. Danke für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]