matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL-System lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - DGL-System lösen
DGL-System lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL-System lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Do 07.07.2011
Autor: engels

Aufgabe
Bestimme die Lösungen von:

[mm] y'=\pmat{ 2 & 2 \\ 0 & 2 }y+\vektor{1 \\ e^{2t}} [/mm] mit [mm] y(0)=\vektor{0 \\ 0} [/mm]

Also ich weiß in etwas das grobe Vorgehen. Ich muss zuerst die homogenen Lösungen (L) bestimmen, dann die partikulären Lösungen (P). Zum Schluss muss ich noch mit L+P=y(0) die Konstanten aus den vorherigen Schritten bestimmen.

Allerdings scheitere ich schon beim ersten Schritt. Wie kann ich die homogenen Lösungen bestimmen. So weit wie ich das jetzt verstanden habe, muss man dafür doch die Gleichung [mm] y'=\pmat{ 2 & 2 \\ 0 & 2 }y [/mm] irgendwie lösen.

Nur wie mach ich das am besten? Ich hab gelesen, dass ich dafür die Eigenwerte brauch. Den Eigenwert [mm] \lambda=2 [/mm] hab ich schon bestimmt. Wie geht es denn nun damit weiter?

        
Bezug
DGL-System lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 So 10.07.2011
Autor: engels

Weiß einer, wie ich dieses System lösen kann?

Bezug
        
Bezug
DGL-System lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Mo 11.07.2011
Autor: Stoecki

die lösungen bei der homogenen dgl setzen sich aus [mm] c_1 [/mm] * [mm] v_1 [/mm] * [mm] exp(\lambda_1 [/mm] x) + [mm] c_2 [/mm] * [mm] v_2 [/mm] * [mm] exp(\lambda_2 [/mm] x) zusammen, wobei [mm] v_i [/mm] die eigenvektoren zum eigenwert [mm] \lambda_i [/mm] sind und [mm] c_i [/mm] eine Konstante. Da [mm] \lambda [/mm] = 2 der einzige Eigenwert ist (ein doppelter) musst du die dimension vom eigenraum prüfen. findest du einen weiteren eigenvektor ist alles gut und die lösung setzt sich aus  [mm] c_1 [/mm] * [mm] v_1 [/mm] * exp(2 x)+ [mm] c_2 [/mm] * [mm] v_2 [/mm] * exp(2 x) zusammen [mm] (c_i [/mm] konstanten, [mm] v_i [/mm] eigenvektoren) anderfalls muss du einen verallgemeinerten eigenvektor ausrechnen. das gibt dir die homogene lösung des problems. den rest musst du schauen. ansatz vom typ der rechten seite könnte klappen

gruß bernhard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]