matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL-Lösung auflösen nach y(x)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - DGL-Lösung auflösen nach y(x)
DGL-Lösung auflösen nach y(x) < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL-Lösung auflösen nach y(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:39 Fr 20.04.2012
Autor: NightmareVirus

Aufgabe
Man bestimme alle Lösungen der Differentialgleichung

[mm]y' = 9y^2-4[/mm]

Hi hänge bei der Auflösung dieser DGL fest.
Habe mittels Integration die Gleichung soweit umformen können, so dass ich weiss dass

[mm]y' = 9y^2-4 \gdw \bruch{2-3y(x)}{2+3y(x)} = e^{12x+c}[/mm]

gilt. Doch wie löse ich das ganze nun nach [mm]y(x)[/mm] auf? Meine erste Idee auf beiden Seiten -1 zu rechnen und zwar in der Form

[mm]\bruch{2-3y(x)}{2+3y(x)} = e^{12x+c} \gdw \bruch{2-3y(x)}{2+3y(x)} - \bruch{2+3y(x)}{2+3y(x)} = e^{12x+c}-1 \gdw \bruch{-6y(x)}{2+3y(x)}= e^{12x+c}-1[/mm]

hilft mir auch nicht wirklich weiter.
Für die passende Umformung wäre ich sehr dankbar ;)




        
Bezug
DGL-Lösung auflösen nach y(x): Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Fr 20.04.2012
Autor: schachuzipus

Hallo NV,


> Man bestimme alle Lösungen der Differentialgleichung
>  
> [mm]y' = 9y^2-4[/mm]
>  Hi hänge bei der Auflösung dieser DGL fest.
>  Habe mittels Integration die Gleichung soweit umformen
> können, so dass ich weiss dass
>  
> [mm]y' = 9y^2-4 \gdw \bruch{2-3y(x)}{2+3y(x)} = e^{12x+c}[/mm]

Hmm, ich komme da auf [mm] $\frac{y-2/3}{y+2/3}=\tilde c\cdot{}e^{12x}$ [/mm]


>  
> gilt. Doch wie löse ich das ganze nun nach [mm]y(x)[/mm] auf? Meine
> erste Idee auf beiden Seiten -1 zu rechnen und zwar in der
> Form
>  
> [mm]\bruch{2-3y(x)}{2+3y(x)} = e^{12x+c} \gdw \bruch{2-3y(x)}{2+3y(x)} - \bruch{2+3y(x)}{2+3y(x)} = e^{12x+c}-1 \gdw \bruch{-6y(x)}{2+3y(x)}= e^{12x+c}-1[/mm]
>  
> hilft mir auch nicht wirklich weiter.
>  Für die passende Umformung wäre ich sehr dankbar ;)

Nun, in deiner (oder meiner ;-)) Lösung multipliziere mit dem Nenner durch, dann rechterhand ausmultiplizieren, alles mit y auf die linke Seite, alles ohne y nach rechts und dann linkerhand y ausklammern und durch den "Klammerrest" teilen, um y freizustellen

Gruß

schachuzipus


Bezug
                
Bezug
DGL-Lösung auflösen nach y(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 Fr 20.04.2012
Autor: NightmareVirus

Nun gut deine Lösung der DGL ist offensichtlich die gleiche, denn

[mm]\bruch{y-\bruch{2}{3}}{y+\bruch{2}{3}} \;=\; \bruch{\bruch{3y}{3}-\bruch{2}{3}}{\bruch{3y}{3}+\bruch{2}{3}} \;=\; \bruch{\bruch{3y-2}{3}}{\bruch{3y+2}{3}} \;=\; \bruch{3y-2}{3y+2}[/mm]

Das fehlende Vorzeichen gribt man ja durch die Konstante c bereinigt. Gut dann werde ich mal schauen ob das mit dem rübermutltiplizieren klappt. Hatte da anfangs den Verdacht dass ich dann x und y vermische und dann nix gewonnen habe... mal schaun.


Bezug
                
Bezug
DGL-Lösung auflösen nach y(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 Fr 20.04.2012
Autor: NightmareVirus

sauber. Deine Beschreibung genommen und das Ergebnis stimmt :) Merci


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]