matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenCramersche Regel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Cramersche Regel
Cramersche Regel < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cramersche Regel: Theoretische Überlegung...
Status: (Frage) beantwortet Status 
Datum: 14:04 So 09.09.2012
Autor: benutzer49

Aufgabe
Warum ist die Cramersche Regel so bedeutend für die theoretische Überlegung?

Wikipedia Eintrag:"Die cramersche Regel oder Determinantenmethode ist eine mathematische Formel für die Lösung eines linearen Gleichungssystems. Sie ist bei der theoretischen Betrachtung linearer Gleichungssysteme hilfreich."

Ich muss unbedingt wissen was konkret mit "theoretische Betrachtung" gemeint ist. Ich habe ähnliche Bemerkungen auch in Lehrbüchern gefunden, weiß aber nicht was damit gemeint ist. Ich bitte dringend um Hilfe!!!

Ich habe diese Frage auch im folgenden Foren auf anderen Internetseiten gestellt: http://www.die-mathematiker.net/topic/Fachsimpelei/Cramersche_Regel/998

        
Bezug
Cramersche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 So 09.09.2012
Autor: Diophant

Hallo und

[willkommenmr]

> Warum ist die Cramersche Regel so bedeutend für die
> theoretische Überlegung?
> Wikipedia Eintrag:"Die cramersche Regel oder
> Determinantenmethode ist eine mathematische Formel für die
> Lösung eines linearen Gleichungssystems. Sie ist bei der
> theoretischen Betrachtung linearer Gleichungssysteme
> hilfreich."
>
> Ich muss unbedingt wissen was konkret mit "theoretische
> Betrachtung" gemeint ist. Ich habe ähnliche Bemerkungen
> auch in Lehrbüchern gefunden, weiß aber nicht was damit
> gemeint ist. Ich bitte dringend um Hilfe!!!

Nun, ich denke, da geht es in erster Linie darum, dass ja der Zusammenhang zwischen der Lösungsmenge bzw. Lösbarkeit eines LGS und der Determinante der Koeffizientenmatrix schön zum Ausdruck kommt. Wobei mir jetzt auch nicht so ganz klar ist, weshalb dem eine solche Bedeutung zukommen soll, da m.A. nach die Betrachtung des Ranges der Koeffizientenmatrix der direktere Weg wäre, um über die Lösbarkeit Auskunft zu erhalten.


Gruß, Diophant

Bezug
        
Bezug
Cramersche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 So 09.09.2012
Autor: HJKweseleit

Theoretische Betrachtung bedeutet nur, dass du keinen Einzalfall mit konkreten Zahlen betrachtest oder deine Überlegungen an einem konkreten Beispiel durchführst. sondern allgemein überlegst.

Bezug
        
Bezug
Cramersche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 So 09.09.2012
Autor: Josef

Hallo benutzer49l,


>  
> Ich muss unbedingt wissen was konkret mit "theoretische
> Betrachtung" gemeint ist.


Die theoretische Betrachtung befasst sich mit Grundsatzfragen, wie z.B.

- Erschließen des Problems
- Methoden der Problemlösung
- Lösungssystematik
- Was geht? Was geht nicht? Wie schnell?



Viele Grüße
Josef


Bezug
                
Bezug
Cramersche Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 So 09.09.2012
Autor: benutzer49

@Josef

Ok das verstehe ich schon, aber warum ist die Cramersche Regel bei diesen Überlegungen wichtig?

Bezug
                        
Bezug
Cramersche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 So 09.09.2012
Autor: Josef

Hallo benutzer49,

die  Cramersche Regel ist eine Methode die Lösung eines linearen Gleichungssystems in  Gleichungen und Unbekannten zu finden, sofern die Lösung existiert und eindeutig ist.

Aber schon bei Systemen aus vier Gleichungen wird die Berechnung der Determinanten sehr aufwändig.

Bei der kubischen Gleichung z.B. ist die die Diskriminate D = [mm] (\bruch{q}{2})^2+ (\bruch{p}{3})^3 [/mm]  für den weiteren Rechengang von Bedeutung.

Ist nämlich D > 0, so erhält man eine reelle und zwei konjugiert komplexe Lösungen.

Der weiter Rechengang ist dann dadurch schon gegeben und eingegrenzt.
Durch dieses Vorgehen erschließt man das Problem und hat auch eine Methode der Problemlösung gefunden.


Viele Grüße
Josef

Bezug
                                
Bezug
Cramersche Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 So 09.09.2012
Autor: benutzer49

Also kurzer info: ich mache demnächst eine akademische Zwischenprüfung in Lineare Algebra und in einem Prüfungsprotokoll bin ich auf diese Frage gestoßen und konnte mir das nicht genau erklären.

Ich formuliere daher die Frage mal neu:

Der Prof:"Warum ist die Cramersche Regel bei theoretischen Überlegungen so bedeutend?"

Antwort:"Die Lösungen hängen stetig von A und b ab."

Wobei es sich hierbei um ein lineares Gleichungssystem Ax=b handelt.

Leider fällt mir hierzu nichts ein. Ich wäre für eventuelle Anregungen sehr dankbar...



Bezug
                                        
Bezug
Cramersche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 09.09.2012
Autor: HJKweseleit

Mit Hilfe der Cramerschen Regel hat man ein Verfahren, wie man die Lösung für eine Unbekannte eines LGS finden kann, ohne gleich das ganze Gleichungssystem zu lösen. Will man aber alle Unbekannten bestimmen, ist dieses Verfahren zu aufwändig.

Gelegentlich benutzt man das Verfahren noch für theoretische Betrachtungen in Beweisen.

Bezug
                        
Bezug
Cramersche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 06:07 Mo 10.09.2012
Autor: Josef

Hallo benutzer49,

im Fall der eindeutigen Lösbarkeit lässt sich die Lösung mit Determinanten (Cramer’sche Formeln) berechnen. Dies ist aber eher von theoretischem Interesse, da die Berechnung von Determinanten sehr aufwendig ist.

Der Rechenaufwand ist normal viel zu hoch, da dann irre viele Determinanten berechnet werden müssen. Das macht diese Regel vor allem für Computer-Programme aber sehr interessant!

Ein quadratisches lineares Gleichungssystem Ax=b kann man mit Hilfe der Determinante von A lösen, sofern det (A) [mm] \not= [/mm] 0 ist. Diese Methode ist jedoch sehr umständlich im Vergleich zum Gauß'schen Eliminationsverfahren.

Hierbei  stellt sich die Frage: "Wie schell?" ist dieses System?
Die Lösungssystematik ist zu beachten und die Methode der Problemlösung ist gefragt.


Viele Grüße
Josef


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]