matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungCramer'sche Regel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Cramer'sche Regel
Cramer'sche Regel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cramer'sche Regel: Unverständnis Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:05 So 20.12.2009
Autor: LariC

Aufgabe
Sei ein spitzwinkliges Dreieck mit den (positiven) Seiten(längen) a,b,c und den jeweil gegenüberliegneden Winkeln [mm] \alpha,\beta,\gamma [/mm] gegeben, Zeigen Sie durch trigonometrische Betrachtungen, dass
b cos [mm] \gamma [/mm] + c cos [mm] \beta [/mm] = a
c cos [mm] \alpha [/mm] + a cos [mm] \gamma [/mm] = b
a cos [mm] \beta [/mm] + b cos [mm] \alpha [/mm] = c

und dann unter Anwendung der Cramer'schen Regel, dass

[mm] cos\alpha [/mm] = [mm] (b^2+c^2-a^2)/(2bc) [/mm]

Als Tipp: Bei den trigonometrischen Betrachtungen soll an rechtwinklige Dreiecke gedacht werden.

Hallo , ich weiß irgendwie nicht richtig wie ich die Aufgabe zu verstehen habe. Ich soll ja zeigen, dass die angegeben Gleichungen für ein spitzwinkliges Dreieck gelten - aber warum dann der Tipp. Und Phytagoras oder so könnte ich ja nur in einem rechtwinklihgen dreick verwenden. Mir ist die Aufgabe irgendwie überhaupt nicht klar.
Was soll ich denn hier wie machen? Und was hat die Cramersche Regel damit zu tun?

        
Bezug
Cramer'sche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 So 20.12.2009
Autor: reverend

Hallo LariC,

> Sei ein spitzwinkliges Dreieck mit den (positiven)
> Seiten(längen) a,b,c und den jeweil gegenüberliegneden
> Winkeln [mm]\alpha,\beta,\gamma[/mm] gegeben, Zeigen Sie durch
> trigonometrische Betrachtungen, dass
>  b cos [mm]\gamma[/mm] + c cos [mm]\beta[/mm] = a
>  c cos [mm]\alpha[/mm] + a cos [mm]\gamma[/mm] = b
>  a cos [mm]\beta[/mm] + b cos [mm]\alpha[/mm] = c
>  
> und dann unter Anwendung der Cramer'schen Regel, dass
>
> [mm]cos\alpha[/mm] = [mm](b^2+c^2-a^2)/(2bc)[/mm]
>  
> Als Tipp: Bei den trigonometrischen Betrachtungen soll an
> rechtwinklige Dreiecke gedacht werden.

Die erste Gleichung bestimmst Du, indem du Dein Dreieck mal vor Dich legst, die Seite a waagerecht vor Dir, und die Höhe [mm] h_a [/mm] einzeichnest. Dann hast Du ja zwei rechtwinklige Dreiecke. Die Seite a wird im Höhenfußpunkt geteilt, und Du kannst mit trigonometrischen Mitteln beide Teile bestimmen.
Das gleiche dann für die anderen Seiten.

Nun hast Du ein Gleichungssystem. Nimm a,b und c als Parameter. Die zu bestimmenden Variablen sind hier [mm] \cos{\alpha}, \cos{\beta} [/mm] und [mm] \cos{\gamma}. [/mm] Wenn Du willst, kannst Du die ja durch gewöhnliche Variablennamen (x,y,z) ersetzen.
Dieses LGS löst Du jetzt mit der Cramerschen Regel nach x auf.

>  Hallo , ich weiß irgendwie nicht richtig wie ich die
> Aufgabe zu verstehen habe. Ich soll ja zeigen, dass die
> angegeben Gleichungen für ein spitzwinkliges Dreieck
> gelten - aber warum dann der Tipp. Und Phytagoras oder so
> könnte ich ja nur in einem rechtwinklihgen dreick
> verwenden. Mir ist die Aufgabe irgendwie überhaupt nicht
> klar.
>  Was soll ich denn hier wie machen? Und was hat die
> Cramersche Regel damit zu tun?

Klarer?

lg
reverend

Bezug
                
Bezug
Cramer'sche Regel: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:12 So 20.12.2009
Autor: LariC

Ja, auf jeden Fall viel klarer.So macht das ganze viel mehr Sinn.
Mit nach x auflösen, meinst du dann wahrscheinlich x:= (a,b,c) und bei dem ersten Teil:
Meinst du da reicht dann aufstellen der Gleichungen anhand der beiden Teildreicke und dann halt ein Begründunug oder gibt es da auch noch einen rechnerischen Beweis.
Oder soll ich den dann halt mit der Cramerischer Regel zeigen!?
Vielen dank für deine Hilfe...

Bezug
                        
Bezug
Cramer'sche Regel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:10 So 20.12.2009
Autor: LariC

Habs hakiert und fange jetzt einfach mal an die aUFGABE MIT DER vRAMERISHEN rGEL ORDENTLICH ZU RECHNEN ! dANKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]