matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenCosinusQ/Q
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Trigonometrische Funktionen" - CosinusQ/Q
CosinusQ/Q < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

CosinusQ/Q: partiell Ableiten
Status: (Frage) beantwortet Status 
Datum: 11:53 So 21.06.2009
Autor: jolly08

Aufgabe
g=(2γcosQ)/(h.p.r)  - nach Q ableiten:
∂g/∂Q = (2γCosQ∂)/(hpr∂Q)

hallo, ich müsste bei einer gausschen fehlerrechnung diese gleichung partiell nach Q ableiten:
g=(2γcosQ)/(h.p.r)

also quasi: ∂g/∂Q = (2γCosQ∂)/(hpr∂Q)


ich weiss, dass sich die ∂ wegkürzen, aber irgendwie scheiter ich gerade dran, cosQ/Q zu kürzen

Q ist im Übrigen eine Zahl = 0,3°

bitte um hilfe...


(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt)


        
Bezug
CosinusQ/Q: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:49 So 21.06.2009
Autor: Tyskie84

Hallo

iund [willkommenmr]

Was sind denn diese h.p.r?

Wenn du deine Funktion nach [mm] \\Q [/mm] ableiten sollst dann heisst das einfach, dass du die übrigen Parameter sofern das welche sind als konstant betrachten sollst.

Dein [mm] \bruch{\partial{g}}{\partial{Q}} [/mm] scheint mir nicht richtig zu sein, denn schon allein aus der tatsache dass die Ableitung von [mm] \\cos(Q) [/mm] einfach [mm] -\\sin(Q) [/mm] ist.

[hut] Gruß

Bezug
                
Bezug
CosinusQ/Q: ?cosQ = -sinQ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 So 21.06.2009
Autor: jolly08

danke für dich rasche antwort

h= Steighöhe - ist bekannt
p= Dichte von Wasser - ebenfalls bekannt
r= Radius der Kapillare - auch bekannt

ich muss es aber so ableiten, weil ich das brauch für die gaußsche fehlerfortpflanzung

aber wenn ich in meinen taschenrechner cos0,3 eingeb, kommt 0,999... raus
und wenn ich -sin0,3 eintipp, dann hab ich -0,004712...

also versteh ich das irgendwie nicht, wie cosQ gleich -sinQ sein kann...

Bezug
                        
Bezug
CosinusQ/Q: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 So 21.06.2009
Autor: Al-Chwarizmi

hallo jolly,


>  h= Steighöhe - ist bekannt
>  p= Dichte von Wasser - ebenfalls bekannt
>  r= Radius der Kapillare - auch bekannt
>  
> ich muss es aber so ableiten, weil ich das brauch für die
> gaußsche fehlerfortpflanzung
>  
> aber wenn ich in meinen taschenrechner cos0,3 eingeb, kommt
> 0,999... raus
>  und wenn ich -sin0,3 eintipp, dann hab ich -0,004712...

denk noch dran, dass du möglicherweise das Bogenmaß
brauchst !!
  

> also versteh ich das irgendwie nicht, wie cosQ gleich -sinQ
> sein kann...

Das hat auch niemand behauptet !
Die Ableitung von cos(Q) nach der Variablen Q ist

      [mm] $\bruch{\partial}{\partial{Q}}\,cos(Q)\ [/mm] =\ [mm] -\,sin(Q)$ [/mm]

Da in deiner Funktion

      $\ g(Y,Q,h,p,r)\ =\ [mm] \bruch{2Y}{h*p*r}*cos(Q)$ [/mm]

ausser dem cos(Q) sonst nichts vorkommt, das noch
von Q abhängig ist, ist die partielle Ableitung nach Q
einfach:

      [mm] $\bruch{\partial}{\partial{Q}}\,g(Y,Q,h,p,r)\ [/mm] =\ [mm] -\,\bruch{2Y}{h*p*r}*sin(Q)$ [/mm]


LG

Bezug
                                
Bezug
CosinusQ/Q: thx
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:51 So 21.06.2009
Autor: jolly08

gaaanz supi - danke vielmals - so versteh ichs schon viel eher (obwohls ja Tyskie) auch schon erklärt hat...
und jetzt kommt auch gleich ein realistischer wert raus
danke euch beiden

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]