matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauCoriolisbeschleunigung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maschinenbau" - Coriolisbeschleunigung
Coriolisbeschleunigung < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Coriolisbeschleunigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Fr 05.11.2010
Autor: janmoda

Hallo,

die absolute Relativbeschleunigung lässt sich schreiben als

[mm]\vec{a}=\vec{R''}+\vec{\omega'}\times\vec{p}+\vec{\omega}\times\vec{p'}+\vec{\omega}\times\vec{v_{rel}}+[\bruch{d\vec{v_{rel}}}{dt}]_{rel} [/mm]

[mm] (\vec{p} [/mm] beschreibt den Ort des zu betrachtenden Punktes im Relativsystem [mm] \vec{R} [/mm] beschriebt den Ort des Relativsystems im Inertialsystem.)

wobei sich damit die Absoltbeschleunigung auch schreiben lässt als [mm]\vec{a}=\vec{a_{f}}+\vec{a_{c}}+\vec{a_{rel}}[/mm] mit

(Führungsbeschleunigung)
[mm]\vec{a_{f}}=\vec{R''}+\vec{\omega'}\times\vec{p}+\vec{\omega}\times(\vec{\omega}\times\vec{p})[/mm]

(Relativbeschleunigung)
[mm]\vec{a_{rel}}=x''_{rel}\vec{e_{1 rel}}+y''_{rel}\vec{e_{2 rel}}+z''_{rel}\vec{e_{3 rel}}[/mm]

(Coriolisbeschleunigung)
[mm]\vec{a_{c}}=2\vec{\omega}\times\vec{v_{rel}}[/mm]

Ich verstehe nicht wo die 2 vor dem Kreuzprodukt bei der Coriolisbschleunigung herkommt. Wäre großartig, wenn mir jemand weiterhelfen kann.

viele Grüße


        
Bezug
Coriolisbeschleunigung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Fr 05.11.2010
Autor: rainerS

Hallo!

> Hallo,
>  
> die absolute Relativbeschleunigung lässt sich schreiben
> als
>
> [mm]\vec{a}=\vec{R''}+\vec{\omega'}\times\vec{p}+\vec{\omega}\times\vec{p'}+\vec{\omega}\times\vec{v_{rel}}+[\bruch{d\vec{v_{rel}}}{dt}]_{rel}[/mm]
>  
> [mm](\vec{p}[/mm] beschreibt den Ort des zu betrachtenden Punktes im
> Relativsystem [mm]\vec{R}[/mm] beschriebt den Ort des Relativsystems
> im Inertialsystem.)
>  
> wobei sich damit die Absoltbeschleunigung auch schreiben
> lässt als [mm]\vec{a}=\vec{a_{f}}+\vec{a_{c}}+\vec{a_{rel}}[/mm]
> mit
>  
> (Führungsbeschleunigung)
>  
> [mm]\vec{a_{f}}=\vec{R''}+\vec{\omega'}\times\vec{p}+\vec{\omega}\times(\vec{\omega}\times\vec{p})[/mm]
>  
> (Relativbeschleunigung)
>  [mm]\vec{a_{rel}}=x''_{rel}\vec{e_{1 rel}}+y''_{rel}\vec{e_{2 rel}}+z''_{rel}\vec{e_{3 rel}}[/mm]
>  
> (Coriolisbeschleunigung)
>  [mm]\vec{a_{c}}=2\vec{\omega}\times\vec{v_{rel}}[/mm]
>  
> Ich verstehe nicht wo die 2 vor dem Kreuzprodukt bei der
> Coriolisbschleunigung herkommt. Wäre großartig, wenn mir
> jemand weiterhelfen kann.

Das liegt daran, dass

[mm]\left[\bruch{d\vec{v}_{rel}}{dt}\right]_{rel} = \bruch{d\vec{v_{rel}}}{dt} + \omega \times \vec{v}_{rel} [/mm]

ist.

Anschaulich: wie sieht die zeitliche Änderung eines Vektors im Relativsystem aus? Es ist die zeitliche Änderung des Vektor im Inertialsystem [mm] ($\bruch{d\vec{v_{rel}}}{dt}$) [/mm] plus die Veränderung, die der Vektor durch die Bewegung des Relativsystems gegen das Inertialsystem erfährt.

Ich weiss, dass es schwierig ist, sich das vorzustellen. Vielleicht ist es einfacher, wenn du statt der Ableitung den Differenzenquotienten betrachtest. Vergleiche die Geschwindigkeiten im Relativsystem und im Inertialsystem zu zwei Zeitpunkten $t$ und [mm] $t+\Delta [/mm] t$.

Im Inertialsystem hast du zum Beispiel [mm] $\vec{v}$ [/mm] und [mm] $\vec{v}+\Delta\vec{v}$. [/mm] Nimm nun an, dass zum Zeitpunkt t die Geschwindigkeit in Inertialsystem und Relativsystem übereinstimmen, also [mm] $\vec{v}_{rel} =\vec{v}$. [/mm] Zum Zeitpunkt [mm] $t+\Delta [/mm] t$ hat sich aber das Relativsystem um gegen das Inertialsystem um den Winkel [mm] $\vec\omega*\Delta [/mm] t$ weitergedreht, sodass zu diesem Zeitpunkt Geschwindigkeit im Relativsystem näherungsweise

[mm]\vec{v}_{rel} + \Delta\vec{v}_{rel}= \vec{v}+\Delta\vec{v} + \vec\omega \times \vec{v} *\Delta t[/mm]

ist.

Wenn du nun den Differenzenquotienten im Relativsystem bildest, hast du

[mm] \bruch{\Delta\vec{v}_{rel}}{\Delta t} = \bruch{\Delta\vec{v}}{\Delta t} + \vec\omega\times \vec{v} + \dots [/mm],

was im Limes [mm] $\Delta t\to [/mm] 0$ genau die behauptete Identität ergibt.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]