matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikCompton Effekt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Compton Effekt
Compton Effekt < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Compton Effekt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 So 04.02.2007
Autor: phys1kAueR

Aufgabe
In der WW eines primären Photons mit einem ruhenden Elektron wird das gestreute Photon unter einem rechten Winkel zum gestreuten Elektron nachgewiesen. Die kinetische Energie des Elektrons ist dabei doppelt so groß wie die des gestreuten Photons.
a) Wie groß ist [mm] \theta [/mm] (Winkel zw. primären Photon und gestreutem Photon)
b) Wie groß ist die Energie des primären Photons?
c) Wie groß ist die Geschwindigkeit des Elektrons nach der WW?

Hallo

ich sitze schon ziemlich lange an der Aufgabe. Ich hoffe ihr könnt mir helfen.

zu a)
Annahmen:
Der Impulserhaltungssatz lautet: [mm] p_{\gamma}=p_{\gamma}'+p_{e}' [/mm]
Des weiteren ist [mm] \phi [/mm] der Winkel zwischen gestreutem Elektron mit Impuls [mm] p_{e}'. [/mm] Außerdem hab ich noch einen Hilfswinkel [mm] \theta' [/mm] eingeführt Winkel zwischen gestreutem Photon [mm] p_{\gamma}' [/mm] und [mm] p_{\gamma} [/mm]

Wenn die Energie des gestreuten Elektron doppelt so groß ist wie die vom gestreuten Photon dann ist auch der Impuls des gestreuten Elektrons doppelt so groß wie vom gestreuten Photon. Es gilt als: [mm] p_{e}' [/mm] = [mm] 2p_{\gamma}' [/mm]

Sowie für die Winkel: [mm] \theta [/mm] + [mm] \phi [/mm] =90° UND 180°= [mm] \theta [/mm] + [mm] \theta' [/mm] SOWIE [mm] Cos(\theta') [/mm] = [mm] \bruch{p_{\gamma'} }{p_{\gamma} } [/mm]
Lösung: [mm] p_{\gamma} [/mm] = 3 [mm] p_{\gamma'} [/mm] = 3 [mm] p_{\gamma}*Cos(\theta') [/mm]
==> [mm] \theta' [/mm] = arccos( [mm] \bruch{1}{3}) [/mm]
==> [mm] \theta [/mm] = 109,5°

zu b)

Mit Energieerhaltunssatz  [mm] E_{\gamma} [/mm] + [mm] m_{0}c^{2} [/mm] = [mm] E_{\gamma}' [/mm] + [mm] E_{e}' [/mm] sowie [mm] E_{e}' [/mm] = 2 [mm] E_{\gamma}' [/mm]

Sind die Ansätze soweit erstmal richtig? Ich würde jetzt mit der Compton Formel [mm] \Delta \lambda [/mm] bestimmen und daraus dann [mm] \lambda [/mm] ausrechnen. Könnte das stimmen?

Danke für Eure Hilfe!

Phys1kauer

        
Bezug
Compton Effekt: Antwort
Status: (Antwort) fertig Status 
Datum: 00:44 Mo 05.02.2007
Autor: leduart

Hallo
> In der WW eines primären Photons mit einem ruhenden
> Elektron wird das gestreute Photon unter einem rechten
> Winkel zum gestreuten Elektron nachgewiesen. Die kinetische
> Energie des Elektrons ist dabei doppelt so groß wie die des
> gestreuten Photons.
>  a) Wie groß ist [mm]\theta[/mm] (Winkel zw. primären Photon und
> gestreutem Photon)
>  b) Wie groß ist die Energie des primären Photons?
>  c) Wie groß ist die Geschwindigkeit des Elektrons nach der
> WW?
>  Hallo
>
> ich sitze schon ziemlich lange an der Aufgabe. Ich hoffe
> ihr könnt mir helfen.
>  
> zu a)
>  Annahmen:
>   Der Impulserhaltungssatz lautet:
> [mm]p_{\gamma}=p_{\gamma}'+p_{e}'[/mm]
>  Des weiteren ist [mm]\phi[/mm] der Winkel zwischen gestreutem
> Elektron mit Impuls [mm]p_{e}'.[/mm]

Ich denke hier fehlt und dem Impus [mm] p_{\gamma} [/mm] ?

> Außerdem hab ich noch einen
> Hilfswinkel [mm]\theta'[/mm] eingeführt Winkel zwischen gestreutem
> Photon [mm]p_{\gamma}'[/mm] und [mm]p_{\gamma}[/mm]

Das ist doch der gefragte Winkel [mm] \theta [/mm] ?

>  
> Wenn die Energie des gestreuten Elektron doppelt so groß
> ist wie die vom gestreuten Photon dann ist auch der Impuls
> des gestreuten Elektrons doppelt so groß wie vom gestreuten
> Photon. Es gilt als: [mm]p_{e}'[/mm] = [mm]2p_{\gamma}'[/mm]

wie kommst du da drauf?
die Impulse sind doch vektoriell zu addieren: wegen des rechten Winkels gilt dann [mm] p_{\gamma}^2=p_e^2+p_{\gamma'^2}: (\bruch{hf}{c})^2=(mv)^2+(\bruch{hf'}{c})^2 [/mm] daraus [mm] (hf)^2=m^2v^2c^2+(hf')^2=E^2-E_0^2+E_{\gamma'}^2 [/mm]
Und [mm] E_{\gamma}=(E-E_0)_e+ E_{\gamma'}=3 E_{\gamma'} [/mm]
Was dein [mm] \theta [/mm] und [mm] \theta' [/mm] sind hab ich nicht kapiert . Welche 2 Winkel im Impulsdiagramm 180 ergeben kann ich nicht sehen.
Wegen dem falschen Impuls hab ich den Rest nicht mehr genauer angesehen.

Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]