matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikCompton-Streuung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Compton-Streuung
Compton-Streuung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Compton-Streuung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:59 Mi 31.10.2012
Autor: Duckx

Hallo ich habe folgende Aufgabe, bei der ich nicht weiter komme:

Ein Photon der Wellenlänge [mm] $\lambda_1$ [/mm] streut an einem ruhenden Elektron. Das Elektron bewegt sich nach dem stoß in einem Winkel
[mm] $\theta [/mm] = [mm] 20^\circ [/mm] $ bezüglich der Richtung des einfallenden Photons.
Die Wellenlänge des Photons nimmt auf [mm] $\lambda_2=1.1\lambda_1$ [/mm] zu. Wie groß ist der winkel $ [mm] \varphi [/mm] $ um den das Photon abgelenkt wird?

Bemerkung: Wählen sie [mm] $k_1= (k_1,0,0)$. [/mm] Nutzen Sie die Impulserhaltung sowie die Zusammenhänge: [mm] $p_{Photon} =\hbar [/mm] k$,
[mm] $p_{e^-} [/mm] =mv$ und
[mm] $\left| k \right| [/mm] =k= [mm] \frac{2\pi}{\lambda}$ [/mm] und leiten Sie
[mm] $\varphi$ [/mm] als Funktion von [mm] $\alpha=\frac{k_2}{k_1}$ [/mm] und
[mm] $\theta$ [/mm] her.

Bis jetzt habe ich den Impulserhaltungssatz angewandt:

$x= [mm] \hbar \cdot k_1 [/mm] = [mm] \hbar\cdot k_2\cdot \cos\varphi [/mm] + [mm] m\cdot [/mm] v [mm] \cdot \cos\theta [/mm] $

[mm] $y=0=-\hbar\cdot k_2\cdot \sin\varphi [/mm] + [mm] m\cdot [/mm] v [mm] \cdot \sin\theta$ [/mm]

Allerdings weiß ich nicht, wie ich weiter vorgehen soll um [mm] $\varphi$ [/mm] herauszubekommen.

mfg Duckx

        
Bezug
Compton-Streuung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:43 Do 01.11.2012
Autor: Duckx

Kann mir bei diesem Problem jemand helfen?

Bezug
        
Bezug
Compton-Streuung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Do 01.11.2012
Autor: rainerS

Hallo Duckx!

> Hallo ich habe folgende Aufgabe, bei der ich nicht weiter
> komme:
>  
> Ein Photon der Wellenlänge [mm]\lambda_1[/mm] streut an einem
> ruhenden Elektron. Das Elektron bewegt sich nach dem stoß
> in einem Winkel
> [mm]\theta = 20^\circ[/mm] bezüglich der Richtung des einfallenden
> Photons.
>  Die Wellenlänge des Photons nimmt auf
> [mm]\lambda_2=1.1\lambda_1[/mm] zu. Wie groß ist der winkel [mm]\varphi[/mm]
> um den das Photon abgelenkt wird?
>  
> Bemerkung: Wählen sie [mm]k_1= (k_1,0,0)[/mm]. Nutzen Sie die
> Impulserhaltung sowie die Zusammenhänge: [mm]p_{Photon} =\hbar k[/mm],
> [mm]p_{e^-} =mv[/mm] und
> [mm]\left| k \right| =k= \frac{2\pi}{\lambda}[/mm] und leiten Sie
> [mm]\varphi[/mm] als Funktion von [mm]\alpha=\frac{k_2}{k_1}[/mm] und
>  [mm]\theta[/mm] her.
>  
> Bis jetzt habe ich den Impulserhaltungssatz angewandt:
>  
> [mm]x= \hbar \cdot k_1 = \hbar\cdot k_2\cdot \cos\varphi + m\cdot v \cdot \cos\theta[/mm]
>  
> [mm]y=0=-\hbar\cdot k_2\cdot \sin\varphi + m\cdot v \cdot \sin\theta[/mm]
>  
> Allerdings weiß ich nicht, wie ich weiter vorgehen soll um
> [mm]\varphi[/mm] herauszubekommen.

Wie wär's, wenn du die Energieerhaltung auch noch benutzt?

[mm] $k_2=\alpha k_1$ [/mm] ist ja bekannt, dann hast du drei Gleichungen und drei Unbekannte.

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]