matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenComplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Complexe Zahlen
Complexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Complexe Zahlen: Vereinfachung
Status: (Frage) beantwortet Status 
Datum: 08:29 Mi 10.01.2018
Autor: b.reis

Aufgabe
Vereinfachen bzw. beweisen Sie:

a) |1+ [mm] \wurzel{3} [/mm] *i |

b) [mm] \bruch{ (7-3i)^{2}}{5-i} [/mm]

c) im( | { [mm] \wurzel{2} [/mm] +3i | [mm] }^{2}) [/mm] und im(( [mm] \wurzel{2}+3i)^{2}) [/mm]

Hallo

Leider war ich nicht in der Vorlesung und habe keine Ahnung wie ich diese Aufgaben Lösen soll.

Meine Frage ist, was muss ich alles lernen um diese Aufgaben lösen zu können?

Danke
Benni

        
Bezug
Complexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Mi 10.01.2018
Autor: Diophant

Hallo,

> Vereinfachen bzw. beweisen Sie:

>

> a) |1+ [mm]\wurzel{3}[/mm] *i |

>

> b) [mm]\bruch{ (7-3i)^{2}}{5-i}[/mm]

>

> c) [mm]im( | { \wurzel{2} +3i | }^{2})[/mm] und [mm]im((\wurzel{2}+3i)^{2})[/mm]
> Hallo

>

> Leider war ich nicht in der Vorlesung und habe keine Ahnung
> wie ich diese Aufgaben Lösen soll.

Hm. Hast du dich selbst schon mit der Materie beschäftigt?

Wenn (mit x,y reell) z=x+iy eine komplexe Zahl ist, dann versteht man unter dem Betrag |z| folgendes:

[mm] |z|=|x+iy|=\sqrt{x^2+y^2} [/mm]

Mann nennt x den Realteil und y den Imaginärteil der komplexen Zahl z.

Damit kannst du a) lösen und c) vermutlich auch (ich verstehe nicht ganz, was da zu tun ist, einfach die Imaginärteile ausrechnen?).

> Meine Frage ist, was muss ich alles lernen um diese
> Aufgaben lösen zu können?

Für diese Aufgaben auf jeden Fall:

- Definition der imaginären Einheit
- Definition der Komplexen Zahlen
- Darstellung der Komplexen Zahlen in der Gaußschen Ebene
- Die Grundrechenarten im Komplexen, insbesondere die Division
- Die Begriffe Realteil, Imaginärteil, Betrag und Argument einer komplexen Zahl
- Der Begriff der konjugierten Komplexen (Zahl)

Darüberhinaus tut man sich einen großen Gefallen, wenn man sich bei diesem Thema von vornherein für jedes einzelne Konzept die geometrische Deutung in der komplexen Ebene klarmacht, also in der oben erwähnten Gaußsche Ebene: ein Koordinatensystem, in dem die komplexen Zahlen Punkte sind, deren Koordinaten sind der Realteil x (waagerechte Achse) und der Imaginärteil y (senkrechte Achse).

Nun noch zur Aufgabe b): multipliziere hier einmal den Zähler aus und erweitere dann den Bruch mit 5+i. Was passiert?

Bei Aufgabe c) ist wie gesagt nicht ganz klar, was da gemeint ist (vor dem Hintergrund, dass am Anfang deiner Aufgabenstellung irgendwo das Wort 'Beweise' vorkommt).


Gruß, Diophant

Bezug
                
Bezug
Complexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:52 Mi 10.01.2018
Autor: b.reis

hallo und danke für die Antwort 8)

In meiner Lösung sind Umformungen der Aufgabe a die ich nicht verstehe.


[mm] |1+\wurzel{3}i|= \wurzel{(1+\wurzel{3}i)* \neg(1+\wurzel{3}i)}=\wurzel{(1+\wurzel{3}i)* (1-\wurzel{3}i)}=\wurzel{1+3}=2 [/mm]

Das verstehe ich nicht.

Danke
Benni

Bezug
                        
Bezug
Complexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Mi 10.01.2018
Autor: Diophant

Hallo,

> hallo und danke für die Antwort 8)

>

> In meiner Lösung sind Umformungen der Aufgabe a die ich
> nicht verstehe.

>
>

> [mm]|1+\wurzel{3}i|= \wurzel{(1+\wurzel{3}i)* \neg(1+\wurzel{3}i)}=\wurzel{(1+\wurzel{3}i)* (1-\wurzel{3}i)}=\wurzel{1+3}=2[/mm]

>

> Das verstehe ich nicht.

Das müsste auch so aussehen:

[mm]\begin{aligned} \left\vert 1+ i\sqrt{3}\right\vert&=\sqrt{\left ( 1+ i\sqrt{3} \right )*\overline{\left ( 1+ i\sqrt{3} \right )}}\\ &=\sqrt{\left ( 1+ i\sqrt{3} \right )*\left ( 1- i\sqrt{3} \right )}\\ &=\sqrt{1+3}\\ &=2 \end{aligned}[/mm]

Für [mm]z=x+iy[/mm] nennt man

[mm]\overline{z}=x-iy[/mm]

die konjugiert Komplexe zu z und man kann leicht nachrechnen, dass allgemein gilt:

[mm] \left\vert z \right\vert=\sqrt{z\overline{z}}[/mm]

Das sind eben alles die Dinge, die du dir selbst aneignen solltest. Hast du geeignete Literatur? Falls nein, die []Wikipedia-Seite ist zwar (wenn man sie zum Lernen verwenden möchte) etwas durcheinander geraten, aber da steht alles drin, was für dich für den Anfang wichtig ist.


Gruß, Diophant

Bezug
                
Bezug
Complexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:38 Fr 12.01.2018
Autor: b.reis

Hallo

Also zur Aufgabe c) sieht die Lösung folgendermaßen aus.

im( | { [mm] \wurzel{2} [/mm] +3i | [mm] }^{2})>=0 [/mm] und damit ist es 0.

Ich habe die Zahl so aufgelöst.

im( | { [mm] \wurzel{2} [/mm] +3i | [mm] }^{2})=|z|^2 =|x+yi|^2= \sqrt{x^2+y^2 }^{2}=x^{2}+y^2 [/mm]

das ist dann 2+9 für [mm] \wurzel{2}^2 +3^2 [/mm] aber dass ist irgendwie nicht null, ich habe mehrere Rechenwege aber ich verstehe schon die Bedeutung von "im" für den Term vor der Klammer nicht und ob die Umformung mit der Potenz und der Äquivalenz von |z| stimmt kann ich nicht sagen, da es nicht null wird.

Danke für die Antwort

Benni

Bezug
                        
Bezug
Complexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:52 Fr 12.01.2018
Autor: b.reis

Ok ich habs verstanden Imaginärteil ;) is nur das i und sein Kofaktor.

Bezug
                                
Bezug
Complexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:38 So 14.01.2018
Autor: Diophant

Hallo b.reis,

diese Mitteilung habe ich erst jetzt entdeckt (daher eine verspätete Antwort).

> Ok ich habs verstanden Imaginärteil ;) is nur das i und
> sein Kofaktor.

Eben nicht! Nur der Faktor vor dem i (also vor der imaginären Einheit) wird als Imaginärteil bezeichnet. Also nochmal:

Für die komplexe Zahl

z=x+iy

ist y der Imaginärteil, also

im(z)=y


Gruß, Diophant

Bezug
                        
Bezug
Complexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Fr 12.01.2018
Autor: Diophant

Hallo,

> Hallo

>

> Also zur Aufgabe c) sieht die Lösung folgendermaßen aus.

>

> [mm]im( | \wurzel{2}+3i |^2)=0[/mm] und damit ist es 0.

>

> Ich habe die Zahl so aufgelöst.

>

> [mm]im( | { \wurzel{2} +3i |}^{2})=|z|^2 =|x+yi|^2= \sqrt{x^2+y^2 }^{2}=x^{2}+y^2[/mm]

>

> das ist dann 2+9 für [mm]\wurzel{2}^2 +3^2[/mm] aber dass ist
> irgendwie nicht null, ich habe mehrere Rechenwege aber ich
> verstehe schon die Bedeutung von "im" für den Term vor der
> Klammer nicht und ob die Umformung mit der Potenz und der
> Äquivalenz von |z| stimmt kann ich nicht sagen, da es
> nicht null wird.

>

So ganz verstehe ich deinen Text nicht. Was meinst du mit Äquivalenz?

Das Adjektiv komplex bedeutet, wenn man es wörtlich übersetzt, so viel wie zusammengesetzt. Das ist dann auch schon die Erklärung für den Begriff der Komplexen Zahlen in der Mathematik. Sie sind stets zusammengesetzt aus einer reellen Zahl x sowie einem Vielfachen der Imaginären Einheit i, etwa y*i (wobei man gerne iy schreibt).

Also eben

z=x+iy

Für Zahlen dieser Form gilt per Definition

Re(z)=x
Im(z)=y

wobei Re(z) die Abkürzung für den Realteil und Im(z) die für den Imaginärteil sind (Beachte: beides sind reelle Zahlen!).

Der Betrag |z| ist ebenfalls immer eine reelle Zahl, also

[mm] |z|=\sqrt{x^2+y^2} [/mm]

Wenn wir diesen Betrag als komplexe Zahl schreiben wollen, könnten wir

[mm] u=\sqrt{x^2+y^2} [/mm]

setzen und damit schreiben:

[mm] |z|=u+i*0=\sqrt{x^2+y^2}+i*0 [/mm]

Also ist

[mm]Re(|z|)=u=\sqrt{x^2+y^2}[/mm]
[mm]Im(|z|)=0[/mm]

Oder einfacher: der Imaginärteil einer reellen Zahl ist stets gleich Null.


Gruß, Diophant

Bezug
        
Bezug
Complexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:55 Mi 10.01.2018
Autor: fred97

Zu c):

Da $| {  [mm] \wurzel{2} [/mm]  +3i |  [mm] }^{2} \in \IR [/mm] $,  ist $im(| {  [mm] \wurzel{2} [/mm]  +3i |  [mm] }^{2})=0$ [/mm]


[mm] $(\wurzel{2} [/mm]  +3i [mm] )^2=2+6 \wurzel{2}i [/mm] -9, $ also: [mm] $im(\wurzel{2} [/mm]  +3i [mm] )^2=6 \wurzel{2}$. [/mm]


Bezug
                
Bezug
Complexe Zahlen: Kleiner Tippfehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:59 Mi 10.01.2018
Autor: Diophant

Hallo Fred,

bei der zweiten Aufgabe fehlt ein 'Im' vor der Klammer.

Gruß, Diophant

Bezug
                        
Bezug
Complexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:06 Mi 10.01.2018
Autor: fred97


> Hallo Fred,
>  
> bei der zweiten Aufgabe fehlt ein 'Im' vor der Klammer.

Ups.. Danke, werde es korrigieren

>  
> Gruß, Diophant


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]