matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieCofinite Topologie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - Cofinite Topologie
Cofinite Topologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cofinite Topologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Mo 05.09.2011
Autor: Rechenfehler

Hallo, Ich habe ein paar Verständnissprobleme mit der Cofiniten Topologie.
Die Def hier im Buch(B.v. Querenburg 2. Auflage) lautet: "X sei eine nicht endliche Menge. Q sei die Familie der Mengen, die aus [mm] \emptyset [/mm] und allen Komplementen von endlichen Mengen besteht." Sieht das dann so aus?
Q:={O [mm] \subseteq [/mm] X | X [mm] \backslash [/mm] O endlich} [mm] \cup [/mm] { [mm] \emptyset [/mm] }
Weiter steht ein Beispiel da. "X sei nicht endlich und trage die cofinite Topologie und es sei A [mm] \subseteq [/mm] X. Ist A eine endliche Menge, so gilt int(A) = [mm] \emptyset [/mm] ,  [mm] \overline{A} [/mm] = A ...." Kann man davon ausgehn, dass A eine abegeschlossene Menge ist also das gilt X [mm] \backslash [/mm] O = A. Deshalb X [mm] \backslash [/mm] A = O und allgemein ist int(M) = [mm] \bigcup_{O \subset M} O_{i} [/mm] wobei [mm] O_{i} \in [/mm] Q. Also int(A) = [mm] \bigcup_{O \subset A} [/mm] X [mm] \backslash [/mm] A aber da es keine Teilmenge von A gibt die in X [mm] \backslash [/mm] A wären muss int(a) = [mm] \emptyset [/mm] sein. Ist das so korrekt? Ich bin mir da immer sehr unsicher...

Gruß

        
Bezug
Cofinite Topologie: Antwort
Status: (Antwort) fertig Status 
Datum: 01:26 Di 06.09.2011
Autor: rainerS

Hallo!

> Hallo, Ich habe ein paar Verständnissprobleme mit der
> Cofiniten Topologie.
>  Die Def hier im Buch(B.v. Querenburg 2. Auflage) lautet:
> "X sei eine nicht endliche Menge. Q sei die Familie der
> Mengen, die aus [mm]\emptyset[/mm] und allen Komplementen von
> endlichen Mengen besteht." Sieht das dann so aus?
>  [mm]Q:=\{O \subseteq X \mid X \backslash O \text{ endlich}\} \cup\{ \emptyset\}[/mm]
>  Weiter steht ein Beispiel da. "X sei nicht endlich und
> trage die cofinite Topologie und es sei A [mm]\subseteq[/mm] X. Ist
> A eine endliche Menge, so gilt int(A) = [mm]\emptyset[/mm] ,  
> [mm]\overline{A} = A[/mm] ...." Kann man davon ausgehn, dass A eine
> abegeschlossene Menge ist also das gilt X [mm]\backslash O = A[/mm].
> Deshalb [mm]X \backslash A = O [/mm]und allgemein ist int(M) =
> [mm]\bigcup_{O \subset M} O_{i}[/mm] wobei [mm]O_{i} \in[/mm] Q. Also int(A)
> = [mm]\bigcup_{O \subset A}[/mm] X [mm]\backslash[/mm] A aber da es keine
> Teilmenge von A gibt die in X [mm]\backslash[/mm] A wären muss
> int(a) = [mm]\emptyset[/mm] sein. Ist das so korrekt? Ich bin mir da
> immer sehr unsicher...

Ich würde das einfacher sagen: alle offenen Mengen (Elemente von Q) außer [mm] $\emptyset$ [/mm] sind unendliche Mengen. Da $int(A)$ eine offene Teilmenge von A ist und daher nur endlich viele Elemente enthält, muss [mm] $int(A)=\emptyset$ [/mm] sein.

Weiter ist das Komplement von A eine offene Menge (Element von Q), also ist A abgeschlossen.

Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]