matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenCobb Douglas Grenzproduktivitä
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Cobb Douglas Grenzproduktivitä
Cobb Douglas Grenzproduktivitä < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cobb Douglas Grenzproduktivitä: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Di 26.05.2009
Autor: Mara22

Aufgabe
Sie sind als Senior bei einer Unternehmensberatung tätig. Ihre Aufgabe ist es, der kritischen Kundschaft die Bestimmungsfaktoren von Güterangebot und Faktoreinkommen in der langen Frist zu erläutern. Glücklicherweise erinnern sie sich an die neoklassische Verteilungstheorie.
Um Ihre Argumente zu illustrieren gehen sie von einer Cobb-Douglas Produktionsfunktion mit Y = [mm] K^\alpha L^1^-^\alpha [/mm] und [mm] 0<\alpha [/mm] <1 aus. Ferner gehen sie von vollständiger Komkurrenz auf Güter und Faktormarkt aus.
Beweisen sie, dass die von Ihnen gewählte Produktionsfunktion konstante Skalenerträge, sowie positive aber abnehmende Grenzproduktivitäten aufweist.

sooo :) also konstante Skalenerträge hab ich hinbekommen. Aber wie erkenne ich, ob bei der positiven als auch bei der abnehmenden Grenzproduktivität das < oder > 0 ist.

Als "Anhang" geb ich mal noch die Definitionen an:
positive Grenzproduktivität:
MPL = [mm] \partial [/mm] Y / [mm] \partial [/mm] L = [mm] F_{L} [/mm] (K,L) >0
MPK = [mm] \partial [/mm] Y / [mm] \partial [/mm] K = [mm] F_{K} [/mm] (K,L) >0

Abnehmende GP:
[mm] F_{LL} [/mm] (K,L) < 0
[mm] F_{KK} [/mm] (K,L) < 0
(also hier die erste Ableitung nochmal abgeleitet)

Danke schonmal im Vorraus

Lg Mara


        
Bezug
Cobb Douglas Grenzproduktivitä: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Mi 27.05.2009
Autor: angela.h.b.


> Sie sind als Senior bei einer Unternehmensberatung tätig.
> Ihre Aufgabe ist es, der kritischen Kundschaft die
> Bestimmungsfaktoren von Güterangebot und Faktoreinkommen in
> der langen Frist zu erläutern. Glücklicherweise erinnern
> sie sich an die neoklassische Verteilungstheorie.
>  Um Ihre Argumente zu illustrieren gehen sie von einer
> Cobb-Douglas Produktionsfunktion mit Y = [mm]K^\alpha L^1^-^\alpha[/mm]
> und [mm]0<\alpha[/mm] <1 aus. Ferner gehen sie von vollständiger
> Komkurrenz auf Güter und Faktormarkt aus.
>  Beweisen sie, dass die von Ihnen gewählte
> Produktionsfunktion konstante Skalenerträge, sowie positive
> aber abnehmende Grenzproduktivitäten aufweist.
>  sooo :) also konstante Skalenerträge hab ich hinbekommen.
> Aber wie erkenne ich, ob bei der positiven als auch bei der
> abnehmenden Grenzproduktivität das < oder > 0 ist.
>  
> Als "Anhang" geb ich mal noch die Definitionen an:
>  positive Grenzproduktivität:
> MPL = [mm]\partial[/mm] Y / [mm]\partial[/mm] L = [mm]F_{L}[/mm] (K,L) >0
>  MPK = [mm]\partial[/mm] Y / [mm]\partial[/mm] K = [mm]F_{K}[/mm] (K,L) >0
>  
> Abnehmende GP:
> [mm]F_{LL}[/mm] (K,L) < 0
> [mm]F_{KK}[/mm] (K,L) < 0
> (also hier die erste Ableitung nochmal abgeleitet)
>  

Hallo,

gut, daß Du die Definitionen mit angibst, sinnigerweise hättest Du auch gleich die Ableitungen mitgeliefert - aus sicherer Quelle weiß ich ja, daß Du sie ausgerechnet hast.

Der Schlüssel zum Verständnis ist das [mm] \alpha. [/mm] Es ist vorausgesetzt, daß [mm] \alpha [/mm] zwischen  0 und 1 liegt.

Da K und L ja wohl positiv sind, ist jede Potenz der beiden auch positv - auch wenn "oben" was Negatives steht.
Damit hängt Positivität oder Negativität ab von den sonstigen Faktoren, die Du in der Ableitung hast, und in welches das [mm] \alpha [/mm] vorkommt.

Das schauen wir uns nun an:


[mm] \bruch{\partial Y }{\partial L}= (1-\alpha)K^{\alpha}L^{-\alpha}. [/mm]

Faktoren "K hoch irgendwas" und "L hoch irgendwas"  sind positiv.

Was ist mit  [mm] (1-\alpha)? [/mm] Nun, es wurde vorausgesetzt, daß [mm] \alpha [/mm] zwischen 0 und 1 liegt, und wenn ich solch einen Zahl von 1 subtrahiere, ist das Ergebnis positiv.
Insgesamt: drei positive Faktoren ==> positiv


[mm] \bruch{\partial Y }{\partial K}= \alpha K^{\alpha-1}L^{1-\alpha}. [/mm]

Faktoren "K hoch irgendwas" und "L hoch irgendwas"  sind positiv, ebenso [mm] \alpha. [/mm] Insgesamt: drei positive Faktoren ==> positiv


Jetzt die Ableitungen [mm] F_K_K [/mm] und [mm] f_L_L [/mm]

[mm] F_K_K=(\alpha-1)\alpha K^{\alpha-2}L^{1-\alpha} [/mm]

Wir hatten besprochen, daß [mm] \alpha K^{\alpha-2}L^{1-\alpha} [/mm] positiv ist. Das wird jetzt mit [mm] (\alpha-1) [/mm] multipliziert. [mm] \alpha [/mm]  ist nach Voraussetzung kleiner als 1, also ist [mm] (\alpha-1) [/mm] negativ. Und da das negative [mm] (\alpha-1) [/mm]  mit was Positivem multipliziert wird, ist das Ergebnis negativ.


[mm] F_L_L=-\alpha (1-\alpha)K^{\alpha}L^{-\alpha-1} [/mm]

Wie zuvor ist  [mm] (1-\alpha)K^{\alpha}L^{-\alpha-1} [/mm] positiv. Das wird mit [mm] -\alpha [/mm] multipliziert, und da [mm] \alpha [/mm] positiv ist, ist [mm] -\alpha [/mm] negativ.
Du multiplizierst also das positive [mm] (1-\alpha)K^{\alpha}L^{-\alpha-1} [/mm] mit was Negativem, also: negativ.


Du kannst das, um Dir selbst etwas zu helfen , ja mal mit einem [mm] \alpha [/mm] zwischen 0 und 1 ausprobieren, etwa mit [mm] \alpha={3}{10} [/mm] bzw. mit [mm] \alpha=0.3, [/mm] was Dir sicher besser gefällt.

Gruß v. Angela







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]