matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenClairaut´sche DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Clairaut´sche DGL
Clairaut´sche DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Clairaut´sche DGL: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:44 So 30.05.2010
Autor: babapapa

Aufgabe
Folgende Clairaut´sche DGL ist zu lösen:

y = x y' + (8 + [mm] y'^2)^{1/4} [/mm]

Hallo!

Ich probiere mich gerade an dieser Aufgabe aber komme seit einiger Zeit nicht weiter.

Also die Clairaut´sche DGL hat die folgende Form:

y = xy' + f(y') wobei g stetig differenzierbar sein muss
Gut die 3-te Wurzel ist differenzierbar und danach überall stetig

also der erste Schritt ist nun die ganze Gleichung nach x abzuleiten

y = x y' + (8 + [mm] y'^2)^{1/4} [/mm]
y' = y'' x + y' + [mm] \bruch{2 y' * y''}{4 * (8 + y'^2)^{1/4}} [/mm]

jetzt soll die gleichung folgende Form haben:

y' = y' + xy'' + f'(y') y'' => y'' (x + f'(y')) = 0

y' soll man nun mit einer variablen S ersetzen
also
S' (x + f'(S)) = 0

umgelegt auf meine Aufgabe

y' = y'' x + y' + [mm] \bruch{2 y' * y''}{4 * (8 + y'^2)^{1/4}} [/mm]
y'' x  + [mm] \bruch{2 y' * y''}{4 * (8 + y'^2)^{1/4}} [/mm] = 0
S = y'

y'' * (x  + [mm] \bruch{1 y'}{2 * (8 + y'^2)^{1/4}}) [/mm] = 0
S' * (x + [mm] \bruch{S}{2 * (8 + S^2)^{1/4}}) [/mm] = 0

damit bekommt man 2 Lösungen
S' = 0
und
S = c
=> y = x y' + (8 + [mm] y'^2)^{1/4} [/mm]
= y = xc + (8 + [mm] c^2)^{1/4} [/mm] wobei c [mm] \in \IR [/mm]

zweite Lösung:

x + [mm] \bruch{S}{2 * (8 + S^2)^{1/4}} [/mm] = 0
=>
x = - [mm] \bruch{S}{2 * (8 + S^2)^{1/4}} [/mm]
einsetzen in die Angabe

y = x y' + (8 + [mm] y'^2)^{1/4} [/mm]
y = - [mm] \bruch{S}{2 * (8 + S^2)^{1/4}} [/mm] * S + (8 + [mm] S^2)^{1/4} [/mm]

aber genau hier stehe ich an, ich weiß nämlich nicht ob mein vorgehen korrekt ist. vielen dank für jeden Tipp

lg
Babapapa


        
Bezug
Clairaut´sche DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 So 30.05.2010
Autor: Martinius

Hallo,

> Folgende Clairaut´sche DGL ist zu lösen:
>  
> y = x y' + (8 + [mm]y'^2)^{1/4}[/mm]
>  Hallo!
>  
> Ich probiere mich gerade an dieser Aufgabe aber komme seit
> einiger Zeit nicht weiter.
>  
> Also die Clairaut´sche DGL hat die folgende Form:
>  
> y = xy' + f(y') wobei g stetig differenzierbar sein muss
>  Gut die 3-te Wurzel ist differenzierbar und danach
> überall stetig
>  
> also der erste Schritt ist nun die ganze Gleichung nach x
> abzuleiten
>  
> y = x y' + (8 + [mm]y'^2)^{1/4}[/mm]
>  y' = y'' x + y' + [mm]\bruch{2 y' * y''}{4 * (8 + y'^2)^{1/4}}[/mm]




Ist die 4. Wurzel richtig abgeleitet? Ist es nicht:

$y' = y'' x + y' + [mm] \bruch{2 y' * y''}{4 * (8 + y'^2)^{3/4}}$ [/mm]



> jetzt soll die gleichung folgende Form haben:
>  
> y' = y' + xy'' + f'(y') y'' => y'' (x + f'(y')) = 0
>  
> y' soll man nun mit einer variablen S ersetzen
>  also
>  S' (x + f'(S)) = 0
>  
> umgelegt auf meine Aufgabe
>  
> y' = y'' x + y' + [mm]\bruch{2 y' * y''}{4 * (8 + y'^2)^{1/4}}[/mm]
>  
> y'' x  + [mm]\bruch{2 y' * y''}{4 * (8 + y'^2)^{1/4}}[/mm] = 0
>  S = y'
>  
> y'' * (x  + [mm]\bruch{1 y'}{2 * (8 + y'^2)^{1/4}})[/mm] = 0
>  S' * (x + [mm]\bruch{S}{2 * (8 + S^2)^{1/4}})[/mm] = 0
>  
> damit bekommt man 2 Lösungen
>  S' = 0
>  und
>  S = c
>  => y = x y' + (8 + [mm]y'^2)^{1/4}[/mm]

>  = y = xc + (8 + [mm]c^2)^{1/4}[/mm] wobei c [mm]\in \IR[/mm]
>  
> zweite Lösung:
>  
> x + [mm]\bruch{S}{2 * (8 + S^2)^{1/4}}[/mm] = 0
>  =>
>  x = - [mm]\bruch{S}{2 * (8 + S^2)^{1/4}}[/mm]
> einsetzen in die Angabe
>  
> y = x y' + (8 + [mm]y'^2)^{1/4}[/mm]
>  y = - [mm]\bruch{S}{2 * (8 + S^2)^{1/4}}[/mm] * S + (8 +
> [mm]S^2)^{1/4}[/mm]
>  
> aber genau hier stehe ich an, ich weiß nämlich nicht ob
> mein vorgehen korrekt ist. vielen dank für jeden Tipp


Abgesehen von der Ableitung der Wurzel habe ich das auch heraus.

$x = [mm] -\bruch{S}{2 * (8 + S^2)^{3/4}}$ [/mm]

$y = [mm] -\bruch{S^2}{2 * (8 + S^2)^{3/4}} [/mm] + (8 + [mm] S^2)^{1/4}$ [/mm]

als Parametergleichungen.


  

> lg
>  Babapapa
>  

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]