matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikChi-Quadrat-Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Chi-Quadrat-Verteilung
Chi-Quadrat-Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chi-Quadrat-Verteilung: 2 Fragen
Status: (Frage) beantwortet Status 
Datum: 23:44 Fr 15.07.2005
Autor: BeniMuller

Nix rumgepostet.

Probe-Prüfung Stochastik Uni Zürich Aufgabe 1.e

Aufgabe:
X sei[mm]\chi_1^2[/mm]-Verteilt.
Geben Sie [mm]P[X \ > \ 4] \ [/mm] an.


mein Lösungsansatz:

[mm] \chi_1^2[/mm] bedeutet, dass die [mm] \chi^2[/mm] -Verteilung 1 Freiheitsgrad (degree of freedom, df) hat.

Auf meinem TI - 89 Titanium gebe ich im Statistik Editor "Chi-square Pdf" ein
und fülle das Pop-up Fenster mit folgenden Parametern :

X - Value : 4
Deg of freedom: 1

Als "Pdf" erhalte ich den Wert 0.027

Da die Wahrscheinlichkeit von  [mm]X \ > \ 4 [/mm] gefragt ist, subtrahiere ich das Ergebnis noch von 1.

[mm]P[X \ > \ 4] = 1 - P[X \ \le \ 4] = 1 \ - \ 0.027 \ = \underline{0.973}[/mm]

Fragen :

1. Ist mein Ergebnis richtig ?

2. Gibt es eine Möglichkeit, eine [mm] \chi^2[/mm]-Verteilung auch ohne Taschenrechner oder Tabelle auszurechnen ?


Gruss aus Zürich

        
Bezug
Chi-Quadrat-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Mo 18.07.2005
Autor: Julius

Hallo Beni!

Erstens ist dein Wert leider falsch und zweites will ich dir zeigen, wie man das auf eine Standardnormalverteilung zurückführen kann (deren Werte man natürlich auch mit dem Rechner numerisch berechnen oder in einer Tabelle nachschlagen muss ;-)).

Die [mm] $\chi_1^2$-Verteilung [/mm] entspricht genau der Verteilung von [mm] $Y^2$, [/mm] wenn $Y$ standardnormalverteilt ist.

Daher gilt:

$P(X>4) = [mm] P(Y^2>4) [/mm] = 1 - [mm] P(Y^2 \le [/mm] 4) = 1  - P(-2 [mm] \le [/mm] Y [mm] \le [/mm] 2) = 1 - [mm] (\Phi(2) [/mm] - [mm] \Phi(-2)) [/mm] = [mm] 1-(\Phi(2) [/mm] - (1 - [mm] \Phi(2)) [/mm] = 2 - [mm] 2\Phi(2) [/mm] = 2-2 [mm] \cdot [/mm] 0,977 = 2-1,954 = 0,046$.

Viele Grüße
Julius

Bezug
                
Bezug
Chi-Quadrat-Verteilung: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:16 Di 19.07.2005
Autor: BeniMuller

Hallo Julius

Danke das Du geantwortet hast, auch wenn dass Verfallsdatum meiner Frage (allerdings unbeabsichtigt) bereits abgelaufen war.

Inzwischen habe ich auch meinen Rechner dazu gebracht, ein Resultat auszuspucken, dass Deinem nicht unähnlich sieht: 0.0455

Gut gibt es den Matheraum :-)

Grüsse aus Zürich



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]