matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisChebyshev Ungleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "stochastische Analysis" - Chebyshev Ungleichung
Chebyshev Ungleichung < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chebyshev Ungleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:58 So 31.01.2010
Autor: pojo

Aufgabe
Es ist X ~ Hyp(100,50,50) (k = 0,1,..50)

Mit der Chebyschev-Ungleichung soll

P(X [mm] \le [/mm] 15) [mm] \le \frac{1}{16} [/mm]

gezeigt werden.


Laut der Chebyshev Ungleichung heißt es

P(|X-EX| [mm] \ge \epsilon) \ge \frac{1}{\epsilon^{2}} [/mm]

E(X) = 25 habe ich berechnet und X [mm] \le [/mm] 15 ist vorgegeben.

Wie gehe ich nun weiter vor?

Inwiefern setze ich in die Ungl. das X ein und wie wähle ich ein geeignetes [mm] \epsilon [/mm] ?

        
Bezug
Chebyshev Ungleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Mo 01.02.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Chebyshev Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:16 Mo 01.02.2010
Autor: ullim

Hi,

Ein paar Dinge sind mir unklar

> Es ist X ~ B(100,50,50) (k = 0,1,..50)
>  

1. Was meinst Du mit B(100,50,50)?


>  Laut der Chebyshev Ungleichung heißt es
>  
> P(|X-EX| [mm]\le \epsilon) \le \frac{1}{\epsilon^{2}}[/mm]
>  

2. Müsste das hier nicht heissen [mm] P(|X-EX|<\epsilon)\ge1-\frac{\sigma^2}{\epsilon^{2}} [/mm]


mfg ullim

Bezug
                
Bezug
Chebyshev Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Mo 01.02.2010
Autor: pojo

X ~ ist Binomialverteilt mit den Parametern 100,50,50.

Und ja, sorry, die Zeichen sind falsch rum..

Bezug
                        
Bezug
Chebyshev Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Mo 01.02.2010
Autor: ullim

Hi Pojo,

ich versteh noch immer nicht ganz. Für mich hat die Binomialverteilung zwei Parameter, die Anzahl der Versuche n und die Eintrittswahrscheinlichkeit für ein Ereignis p. Was bedeutet der dritte Parameter und was ist welcher Parameter in Deiner schreibweise.

Bei der von Dir angegebenen Ungleichung fehlt auch noch der [mm] \sigma [/mm] Parameter.

mfg ullim

Bezug
                                
Bezug
Chebyshev Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Mo 01.02.2010
Autor: pojo

Ich war in Gedanken wohl ganz woanders, natürlich meine ich die hypergeom. Verteilung! :-I

Bezug
                                        
Bezug
Chebyshev Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Mo 01.02.2010
Autor: ullim

Hi,

also mir ist es nicht gelungen den Nachweis über die Tschebyschow-Ungleichung zu erbringen, aber fast.

Die Tschebyschow-Ungleichung lautet

[mm] P(|X-EX|\ge\epsilon)\le\frac{\sigma^2}{\epsilon^{2}} [/mm]

Der Mittelwert berechnet sich so, wie Du es gemacht hast zu 25 und die Varianz berechnet sich zu

[mm] \sigma^2=n*\bruch{M}{N}\left(1-\bruch{M}{N}\right)\bruch{N-n}{N-1} [/mm] und das ergibt [mm] \sigma^2=\bruch{25^2}{99} [/mm]

Die Tschebyschow-Ungleichung kann man auch so schreiben

[mm] P(X\le{EX}-\epsilon)+P(X\ge{EX}+\epsilon)\le\frac{\sigma^2}{\epsilon^{2}} [/mm]

Wählt man [mm] \epsilon=10 \Rightarrow [/mm]

[mm] P(X\le{15})+P(X\ge{35})\le\bruch{25^2}{99*100} [/mm] und daraus

[mm] P(X\le{15})\le\bruch{25^2}{99*100} [/mm]

Die rechte Seite ist jetzt dummerweise etwas gößer als [mm] \bruch{1}{16}. [/mm] Wäre die Varianz aber

[mm] \sigma^2=n*\bruch{M}{N}\left(1-\bruch{M}{N}\right)\bruch{N-n}{N} [/mm] würde [mm] \sigma^2=\bruch{25^2}{100} [/mm] gelten und

[mm] P(X\le{15})\le\bruch{25^2}{100*100}=\bruch{1}{16} [/mm] folgen.

Der Unterschied ist also in der Varianz Berechnung des Letzten Nenners, N-1 anstatt N. Was besseres ist mir nicht eingefallen. Vielleicht ist aber auch die Aufgabenstellung falsch.

Natürlich gilt aber [mm] P(X\le15)\le\bruch{1}{16} [/mm] wenn man die hypergeometrische Verteilung direkt benutzt.

[mm] P(X\le15)=0.00006034 [/mm]

Die Tschebyschow-Ungleichung schätzt eben nur sehr grob ab.

Ich hoffe es hilft obwohl der Beweis nicht erbracht wurde.

mfg ullim


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]