matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraCharakteristik eines Rings
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Charakteristik eines Rings
Charakteristik eines Rings < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Charakteristik eines Rings: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 So 30.05.2010
Autor: gollum13

Aufgabe
Geben sie die Charakteristik des folgenden Ringes an:

[mm] \IZ [/mm]/4[mm] \IZ [/mm] x [mm] \IZ [/mm]/3[mm] \IZ [/mm]

Hallo,
wir haben die Charakteristik eines Rings mit 1 definiert als kleinste natürliche Zahl n mit n 1 = 0. Für [mm] \IZ [/mm]/4[mm] \IZ [/mm] wäre das also einfach 4. Beim Kreuzprodukt würde ich nun vermuten, dass es einfach das kgV der beiden Dinger ist. In dem Fall 12. Was meint ihr?


PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Charakteristik eines Rings: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 So 30.05.2010
Autor: Arcesius

Hey

> Geben sie die Charakteristik des folgenden Ringes an:
>  
> [mm]\IZ [/mm]/4[mm] \IZ[/mm] x [mm]\IZ [/mm]/3[mm] \IZ[/mm]
>  
> Hallo,
>  wir haben die Charakteristik eines Rings mit 1 definiert
> als kleinste natürliche Zahl n mit n 1 = 0. Für [mm]\IZ [/mm]/4[mm] \IZ[/mm]
> wäre das also einfach 4. Beim Kreuzprodukt würde ich nun
> vermuten, dass es einfach das kgV der beiden Dinger ist. In
> dem Fall 12. Was meint ihr?

Beachte, dass ggT(3,4) = 1. Somit ist das ganze isomorph zu...?

So solltest du eine Argumentation finden, um dein Ergebnis zu verifizieren :)

>  
>
> PS: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Grüsse, Amaro

Bezug
                
Bezug
Charakteristik eines Rings: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 So 30.05.2010
Autor: gollum13

Ja, das ist isomorph zu [mm] \IZ [/mm]/12[mm] \IZ [/mm]. Aber mir war nicht klar, dass die Charakteristik dabei erhalten bleibt. Klingt aber vernünftig.

Bezug
                        
Bezug
Charakteristik eines Rings: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 So 30.05.2010
Autor: Arcesius

Hey

> Ja, das ist isomorph zu [mm]\IZ [/mm]/12[mm] \IZ [/mm]. Aber mir war nicht
> klar, dass die Charakteristik dabei erhalten bleibt. Klingt
> aber vernünftig.

Na das gilt einfach hier nach dem Chinesischen Restsatz, weil ggT(3,4) = 1.

Für n,m [mm] \in \IN_{>0} [/mm] mit ggT(m,n) = d > 1 gilt im Allgemeinen [mm] \IZ/n\IZ \times \IZ/m\IZ \not\cong \IZ/mn\IZ [/mm]

Grüsse, Amaro


Bezug
                                
Bezug
Charakteristik eines Rings: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 So 30.05.2010
Autor: gollum13

Aber ich kann doch jede zyklische (und damit abelsche) Gruppe als direktes Produkt zyklischer Untergruppen darstellen...

Bezug
                                        
Bezug
Charakteristik eines Rings: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Mo 31.05.2010
Autor: Arcesius

Hallo

> Aber ich kann doch jede zyklische (und damit abelsche)
> Gruppe als direktes Produkt zyklischer Untergruppen
> darstellen...

Ja, das ist so. Aber das ist die Rückrichtung. Falls du eine zyklische Gruppe [mm] \IZ/n\IZ [/mm] gegeben hast, so gilt [mm] \IZ/n\IZ \cong \IZ/p_{1}^{e_{1}}\IZ\times...\times\IZ/p_{r}^{e_{r}}\IZ, [/mm] wobei n = [mm] \prod\limits_{i=1}^{r}{p_{i}^{e_{i}}} [/mm] die Primfaktorzerlegung von n ist.

Aber umgekehrt gilt die Bijektivität nur, wenn das Direkte Produkt zwischen zyklischen Gruppen mit teilerfremden Ordnungen gebildet wird.

Beispielsweise gilt [mm] \IZ/3\IZ\times\IZ/4\IZ \cong \IZ/12\IZ, [/mm] aber auf der anderen Seite ist beispielsweise [mm] \IZ/3\IZ\times\IZ/6\IZ \not\cong \IZ/18\IZ [/mm]

Grüsse, Amaro

Bezug
                                                
Bezug
Charakteristik eines Rings: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Mo 31.05.2010
Autor: gollum13

Ok, und [mm] \IZ/3^2\IZ\times\IZ/2\IZ \cong \IZ/18\IZ [/mm] , aber [mm] \IZ/3\IZ\times\IZ/3\IZ \not\cong \IZ/9\IZ [/mm]

besten Dank übrigens...


Edit: Die 'zyklizität' bleibt unter dem Kreuzprodukt i.A. auch nicht erhalten oder?

Bezug
                                                        
Bezug
Charakteristik eines Rings: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Mo 31.05.2010
Autor: felixf

Hallo!

> Ok, und [mm]\IZ/3^2\IZ\times\IZ/2\IZ \cong \IZ/18\IZ[/mm] , aber
> [mm]\IZ/3\IZ\times\IZ/3\IZ \not\cong \IZ/9\IZ[/mm]
>  
> besten Dank übrigens...
>  
> Edit: Die 'zyklizität' bleibt unter dem Kreuzprodukt i.A.
> auch nicht erhalten oder?

Nein, das tut sie nicht. Es gibt da z.B. eine schoene Uebungsaufgabe aus der Algebra:

"Seien $n, m$ zwei natuerliche Zahlen. Genau dann ist [mm] $\IZ/n\IZ \times \IZ/m\IZ$ [/mm] zyklisch, wenn $n$ und $m$ teilerfremd sind."

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]