matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperCharakteristik eines Körpers
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Charakteristik eines Körpers
Charakteristik eines Körpers < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Charakteristik eines Körpers: Charakteristik teilt Ordnung?
Status: (Frage) beantwortet Status 
Datum: 11:01 So 13.04.2014
Autor: pablovschby

Aufgabe
Verständnisfrage: Ich betrachte [mm] \IF_q[x] [/mm] / [mm] x^b [/mm] mit einer Primzahl q und b [mm] \in \IN [/mm] .

Wer sich ein solches Element f(x) in dieser Menge ansieht, stellt schnell fest, dass die Anzahl der invertierbaren Elemente = | [mm] \IF_q[x] [/mm] / [mm] x^b [/mm] | = (q-1)*q^(b-1) ist weil [mm] x^b=0, [/mm] also nur der erste Koeffizient von f(x) invertierbar sein muss, damit f(x) inv.bar ist.


Meine Frage dazu: Was ist die Charakteristik dieser invertierbaren Elemente oder, wenn es ein Körper sein muss:

Was ist die Charakteristik von  [mm] (\IF_q[x] [/mm] / [mm] x^b) \cup \{0 \} [/mm] ? Ist es (q-1)*b? Wie lässt sich das verallgemeinern?

        
Bezug
Charakteristik eines Körpers: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 So 13.04.2014
Autor: felixf

Moin!

> Verständnisfrage: Ich betrachte [mm]\IF_q[x][/mm] / [mm]x^b[/mm] mit einer
> Primzahl q und b [mm]\in \IN[/mm] .
>  
> Wer sich ein solches Element f(x) in dieser Menge ansieht,
> stellt schnell fest, dass die Anzahl der invertierbaren
> Elemente = | [mm]\IF_q[x][/mm] / [mm]x^b[/mm] | = (q-1)*q^(b-1) ist weil
> [mm]x^b=0,[/mm] also nur der erste Koeffizient von f(x) invertierbar
> sein muss, damit f(x) inv.bar ist.

Genau, die Einheiten sind genau die Restklassen von Polynomen mit konstanten Term ungleich 0 (da in [mm] $\IF_q$ [/mm] die Bedingung [mm] $\neq [/mm] 0$ aequivalent zu Invertierbar ist).

(Das ist im Ring der formalen Potenzreihen [mm] $\IF_q[[x]]$ [/mm] uebrigens genauso; es gibt auch eine sehr enge Beziehung zwischen diesem und den Ringen [mm] $\IF_q[x]/(x^b)$, [/mm] $b [mm] \in \IN$.) [/mm]

> Meine Frage dazu: Was ist die Charakteristik dieser
> invertierbaren Elemente oder, wenn es ein Körper sein
> muss:

Die Charakteristik ist nur fuer einen Ring (mit Eins) definiert und nicht fuer einzelnde Elemente.

(Man kann natuerlich die Charakteristik eines Elementes $a$ als kleinste natuerliche Zahl $n > 0$ mit $n [mm] \cdot [/mm] a = 0$ definieren, bzw. als 0 wenn es kein solches $n > 0$ gibt. In dem Fall ist es aber so: hat der Ring einen Unterkoerper, so ist die Charakteristik eines jeden Elements gleich der Charakteristik dieses Unterkoerpers. Hier hast du den Unterkoerper [mm] $\IF_q$.) [/mm]

> Was ist die Charakteristik von  [mm](\IF_q[x][/mm] / [mm]x^b) \cup \{0 \}[/mm]
> ? Ist es (q-1)*b? Wie lässt sich das verallgemeinern?

Die Charakteristik eines Ringes ist die seines Primringes, und der ist hier gleich [mm] $\IF_q$ [/mm] (da $q$ eine Primzahl ist). Also ist die Charakteristik gleich $q$.

LG Felix


Bezug
                
Bezug
Charakteristik eines Körpers: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:39 Mo 14.04.2014
Autor: UniversellesObjekt


> Die Charakteristik eines Ringes ist die seines Primringes,
> und der ist hier gleich [mm]\IF_q[/mm] (da [mm]q[/mm] eine Primzahl ist).
> Also ist die Charakteristik gleich [mm]q[/mm].

Hi,

Die Aussage ist mir natürlich klar, aber wie soll das Argument funktionieren? Die Charakteristik von [mm] $\IZ/(n)[x]/(x^b) [/mm] $ ist doch auch dann $ n $, wenn $ n $ nicht prim ist.

Liebe Grüße,
UniversellesObjekt

Bezug
                        
Bezug
Charakteristik eines Körpers: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:49 Mi 16.04.2014
Autor: felixf

Moin UniversellesObjekt,

> > Die Charakteristik eines Ringes ist die seines Primringes,
> > und der ist hier gleich [mm]\IF_q[/mm] (da [mm]q[/mm] eine Primzahl ist).
> > Also ist die Charakteristik gleich [mm]q[/mm].
>  
> Die Aussage ist mir natürlich klar, aber wie soll das
> Argument funktionieren? Die Charakteristik von
> [mm]\IZ/(n)[x]/(x^b)[/mm] ist doch auch dann [mm]n [/mm], wenn [mm]n[/mm] nicht prim
> ist.

das Bild des kanonischen Morphismus [mm] $\IZ \to [/mm] R$ liegt immer im Primring, weil das Bild genau der Primring ist :-) Damit ist die Charakteristik des Primringes (wenn man die Charakteristik ueber den Kern des einzigen Morphismus [mm] $\IZ \to [/mm] R$ definiert) gleich der vom ganzen Ring.

Und ja, damit ist die Charakteristik von [mm] $(\IZ/\langle [/mm] n [mm] \rangle)[x]/\langle x^b \rangle$ [/mm] ebenfalls gleich $n$, egal welchen Wert $n [mm] \ge [/mm] 0$ hat.

LG Felix


Bezug
                                
Bezug
Charakteristik eines Körpers: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:13 Mi 16.04.2014
Autor: UniversellesObjekt

Hi,

Mir ging es nur um das " weil $ q $ eine Primzahl ist". Aber ist auch nicht so wild :-)

Liebe Grüße,
UniversellesObjekt

Bezug
        
Bezug
Charakteristik eines Körpers: Antwort
Status: (Antwort) fertig Status 
Datum: 01:48 Mo 14.04.2014
Autor: UniversellesObjekt


> Wie lässt sich das verallgemeinern?

Hi,

Verallgemeinern lässt es sich folgendermaßen: Ist [mm] $\psi\colon R\longrightarrow [/mm] R'$ ein Ringhomomorphismus, so teilt die Charakteristik von $R'$ die Charakteristik von $R$. Falls [mm] $\psi$ [/mm] injektiv ist, gilt sogar Gleichheit.

In deinem Beispiel ist der kanonische Pfeil [mm] $\IZ/(n)\longrightarrow\IZ/(n)[x]\longrightarrow\IZ/(n)[x]/(x^b)$ [/mm] offensichtlich injektiv, insbesondere für $n=q$ prim.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]