matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenCharakteristik, Wellengl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Partielle Differentialgleichungen" - Charakteristik, Wellengl.
Charakteristik, Wellengl. < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Charakteristik, Wellengl.: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 19:14 Mi 26.10.2011
Autor: aly19

Aufgabe
1) (nicht eindeutig lösbare) DGL [mm] (\partial_x u(x,y))^2-y(\partial_y u(x,y))^2=0 [/mm] für [mm] (x,y)\in \IR_{\geq 0}\times \IR_{\geq 0}. [/mm]
a) Berechnen sie die zugehörigen charakteristischen Richtungen.
b) Geben sie eine nicht triviale Lösung der DGL an.

2) u [mm] \in C^2(\IR \times [/mm] ]0, [mm] \infty[), [/mm] x [mm] \tau \in C^1(\IR \times [/mm] ]0, [mm] \infty[). [/mm] zeigen sie dass die nichtlineare wellengleichung [mm] \partial_t^2u-\partial_xp(\partial_xu)=0 [/mm] äquivalent zum p-System
[mm] \partial_t \tau-\partial_xv=0 [/mm]
[mm] \partial_t v-\partial_x p(\tau)=0 [/mm]
ist.

sooo, ich komm bei beiden aufgaben nicht weiter und hoffe, dass hier jemand nen Tipp für mich hat.
zu 1)
also ich weiß nicht wie ich die dgl auf die Form bekomme, so dass ich diese charakteristiken methode anwenden kann, was mich stört sind die quadrate, kann ich da nicht einfach die wurzel ziehen?
2) äquivalent bedeutet hier doch, dass beide Gleichungen diesele Lösung haben oder? ich weiß irgendwie nicht so genau, was [mm] \partial_xp(\partial_x [/mm] u) ist, das p hängt doch nicht explizit von x ab oder? als tipp haben wir noch: satz von schwarz und hauptsatz der integral- und differentialrechnung.
Ich hoffe jemand hat dazu nen Tipp für mich. Das wäre super, viele grüße.

        
Bezug
Charakteristik, Wellengl.: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 19:37 Mi 26.10.2011
Autor: MathePower

Hallo aly19,

> 1) (nicht eindeutig lösbare) DGL [mm](\partial_x u(x,y))^2-y(\partial_y u(x,y))^2=0[/mm]
> für [mm](x,y)\in \IR_{\geq 0}\times \IR_{\geq 0}.[/mm]
>  a)
> Berechnen sie die zugehörigen charakteristischen
> Richtungen.
> b) Geben sie eine nicht triviale Lösung der DGL an.
>
> 2) u [mm]\in C^2(\IR \times[/mm] ]0, [mm]\infty[),[/mm] x [mm]\tau \in C^1(\IR \times[/mm]
> ]0, [mm]\infty[).[/mm] zeigen sie dass die nichtlineare
> wellengleichung [mm]\partial_t^2u-\partial_xp(\partial_xu)=0[/mm]
> äquivalent zum p-System
> [mm]\partial_t \tau-\partial_xv=0[/mm]
>  [mm]\partial_t v-\partial_x p(\tau)=0[/mm]
>  
> ist.
>  sooo, ich komm bei beiden aufgaben nicht weiter und hoffe,
> dass hier jemand nen Tipp für mich hat.
> zu 1)
> also ich weiß nicht wie ich die dgl auf die Form bekomme,
> so dass ich diese charakteristiken methode anwenden kann,
> was mich stört sind die quadrate, kann ich da nicht
> einfach die wurzel ziehen?


Nein.

Zerlege die gegebene DGL in ein Produkt aus 2 Faktoren.

Stichwort: 3. Binomische Formel.


>  2) äquivalent bedeutet hier doch, dass beide Gleichungen
> diesele Lösung haben oder? ich weiß irgendwie nicht so
> genau, was [mm]\partial_xp(\partial_x[/mm] u) ist, das p hängt doch
> nicht explizit von x ab oder? als tipp haben wir noch: satz
> von schwarz und hauptsatz der integral- und
> differentialrechnung.
> Ich hoffe jemand hat dazu nen Tipp für mich. Das wäre
> super, viele grüße.  



Gruss
MathePower

Bezug
                
Bezug
Charakteristik, Wellengl.: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 19:56 Mi 26.10.2011
Autor: aly19

danke für die schnelle antwort :)
okay dann bekomme ich:
[mm] (\partial_xu(x,y)+\wurzel{y}\partial_yu(x,y))(\partial_x u(x,y)-\wurzel{y}\partial_yu(x,y))=0 [/mm]
also muss einer der Faktoren Null werden, kann ich die dann gertennt betrachten?
also zunächst den Fall:
[mm] \partial_xu(x,y)+\wurzel{y}\partial_yu(x,y)=0?? [/mm]

Bezug
                        
Bezug
Charakteristik, Wellengl.: Antwort
Status: (Antwort) fertig Status 
Datum: 03:41 Do 27.10.2011
Autor: MathePower

Hallo aly19,

> danke für die schnelle antwort :)
>  okay dann bekomme ich:
> [mm](\partial_xu(x,y)+\wurzel{y}\partial_yu(x,y))(\partial_x u(x,y)-\wurzel{y}\partial_yu(x,y))=0[/mm]
>  
> also muss einer der Faktoren Null werden, kann ich die dann
> gertennt betrachten?
> also zunächst den Fall:
> [mm]\partial_xu(x,y)+\wurzel{y}\partial_yu(x,y)=0??[/mm]  


Ja.


Gruss
MathePower

Bezug
                
Bezug
Charakteristik, Wellengl.: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 20:41 Mi 26.10.2011
Autor: aly19

also ich hab das jetzt mal gemacht und würde dann als charakteristik bekommen, [mm] \gamma(t)=(t,(\pm t/2+C)^2) [/mm] kann das stimmen? die konstante muss doch noch drinstehen weil kein anfangswert gegeben ist oder? wäre super wenn das nochmal jemand angucken kann. viele grüßee

Bezug
                        
Bezug
Charakteristik, Wellengl.: Antwort
Status: (Antwort) fertig Status 
Datum: 03:48 Do 27.10.2011
Autor: MathePower

Hallo aly19,

> also ich hab das jetzt mal gemacht und würde dann als
> charakteristik bekommen, [mm]\gamma(t)=(t,(\pm t/2+C)^2)[/mm] kann
> das stimmen? die konstante muss doch noch drinstehen weil
> kein anfangswert gegeben ist oder? wäre super wenn das
> nochmal jemand angucken kann. viele grüßee


Ja, das stimmt.


Gruss
MathePower

Bezug
        
Bezug
Charakteristik, Wellengl.: zu 2)
Status: (Antwort) fertig Status 
Datum: 16:14 Do 27.10.2011
Autor: MatthiasKr

Hallo,

> 1) (nicht eindeutig lösbare) DGL [mm](\partial_x u(x,y))^2-y(\partial_y u(x,y))^2=0[/mm]
> für [mm](x,y)\in \IR_{\geq 0}\times \IR_{\geq 0}.[/mm]
>  a)
> Berechnen sie die zugehörigen charakteristischen
> Richtungen.
> b) Geben sie eine nicht triviale Lösung der DGL an.
>
> 2) u [mm]\in C^2(\IR \times[/mm] ]0, [mm]\infty[),[/mm] x [mm]\tau \in C^1(\IR \times[/mm]
> ]0, [mm]\infty[).[/mm] zeigen sie dass die nichtlineare
> wellengleichung [mm]\partial_t^2u-\partial_xp(\partial_xu)=0[/mm]
> äquivalent zum p-System
> [mm]\partial_t \tau-\partial_xv=0[/mm]
>  [mm]\partial_t v-\partial_x p(\tau)=0[/mm]
>  
> ist.
>  sooo, ich komm bei beiden aufgaben nicht weiter und hoffe,
> dass hier jemand nen Tipp für mich hat.
> zu 1)
> also ich weiß nicht wie ich die dgl auf die Form bekomme,
> so dass ich diese charakteristiken methode anwenden kann,
> was mich stört sind die quadrate, kann ich da nicht
> einfach die wurzel ziehen?
>  2) äquivalent bedeutet hier doch, dass beide Gleichungen
> diesele Lösung haben oder? ich weiß irgendwie nicht so
> genau, was [mm]\partial_xp(\partial_x[/mm] u) ist, das p hängt doch
> nicht explizit von x ab oder? als tipp haben wir noch: satz
> von schwarz und hauptsatz der integral- und
> differentialrechnung.
> Ich hoffe jemand hat dazu nen Tipp für mich. Das wäre
> super, viele grüße.  

Nun, zuerst mal ist es zweckmässig

[mm] $v=\partial_t [/mm] u$ und
[mm] $\tau=\partial_x [/mm] u$

zu setzen, um von der ausgangsgleichung auf die zweite der Gleichungen im p-System zu kommen. Wieso gilt dann die erste der Gleichungen automatisch?

Gruss
Matthias






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]