matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieCharakterisierung von R
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Charakterisierung von R
Charakterisierung von R < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Charakterisierung von R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 So 06.10.2013
Autor: phychem

Hallo


Ich hab mir gerade den wikipedia-Artikel zu den reellen Zahlen durchgelesen und da stehen zwei Charakterisierungen der reellen Zahlen:

1. Geordneter Körper, der ordnungsvollständig ist (der also das Supremumsaxiom oder äquivalent dazu das Schnittaxiom erfüllt).

2. Geordneter Körper, der bzgl. des Absolutbetrags vollständig ist oder äquivalent dazu das Intervallschachtellungsprinzip erfüllt, UND der archimedisch angeordnet ist.

http://de.wikipedia.org/wiki/Reelle_Zahl

Meine Frage:
Wieso wird im zweiten Fall das Archimedische Axiom explizit gefordert?

Bekanntlich impliziert das Supremumsaxiom (sowie das dazu äquivalente Schnittaxiom) ja gerade auch das Archimedische Axiom, weshalb dieses in der ersten Charakterisierung nicht explizt gefordert werden muss. Nun meinte ich, dass das Supremumsaxiom/Schnittaxiom ja auch gerade äquivalent zum Intervallschachtellungsprinzip ist. Gilt die Implikation Intervallschachtellungsprinzip => Supremumsaxiom/Schnittaxiom etwa nur, wenn das archimedische Axiom vorausgesetzt wird?



        
Bezug
Charakterisierung von R: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 So 06.10.2013
Autor: steppenhahn

Hallo,



> Ich hab mir gerade den wikipedia-Artikel zu den reellen
> Zahlen durchgelesen und da stehen zwei Charakterisierungen
> der reellen Zahlen:
>  
> 1. Geordneter Körper, der ordnungsvollständig ist (der
> also das Supremumsaxiom oder äquivalent dazu das
> Schnittaxiom erfüllt).
>  
> 2. Geordneter Körper, der bzgl. des Absolutbetrags
> vollständig ist oder äquivalent dazu das
> Intervallschachtellungsprinzip erfüllt, UND der
> archimedisch angeordnet ist.
>  
> http://de.wikipedia.org/wiki/Reelle_Zahl
>  
> Meine Frage:
> Wieso wird im zweiten Fall das Archimedische Axiom explizit
> gefordert?
>  
> Bekanntlich impliziert das Supremumsaxiom (sowie das dazu
> äquivalente Schnittaxiom) ja gerade auch das Archimedische
> Axiom, weshalb dieses in der ersten Charakterisierung nicht
> explizt gefordert werden muss.

Ja.

> Nun meinte ich, dass das
> Supremumsaxiom/Schnittaxiom ja auch gerade äquivalent zum
> Intervallschachtellungsprinzip ist. Gilt die Implikation
> Intervallschachtellungsprinzip =>
> Supremumsaxiom/Schnittaxiom etwa nur, wenn das
> archimedische Axiom vorausgesetzt wird?


Ja.
Das Intervallschachtelungsprinzip oder das auch die Cauchy-Vollständigkeit ist schwächer als das Schnittaxiom.

Einen Beweis für die Richtung Cauchy --> Dedekind findest du in "Lattices and Ordered Algebraic Structures" von T.S. Blyth, Seite 184. (Gibt es auf Google Books...)
Man braucht das Archimedische Axiom gewissermaßen dafür, dass die reellen Zahlen nicht "wesentlich" größer als die natürlichen Zahlen sind.
Das kann z.B. die Cauchy-Vollständigkeit nicht leisten.


Viele Grüße,
Stefan

Bezug
                
Bezug
Charakterisierung von R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 So 06.10.2013
Autor: phychem

Danke für die Antwort.

Was mich noch etwas verwirrt: Im "Königsberger Analysis 1" findet man auf Seite 14 ein Beweis der Implikation Intervallschachtellungsprinzip => Supremumsaxiom (welches ja äquivalent zum Schnittaxiom ist) und ich hab eben im folgenden Skript auf Seite 40/41 ein Beweis der Implikation Intervallschachtellung => Schnittaxiom gefunden:

[]Link

Überseh ich etwas? Wird in diesen Beweisen irgendwo indirekt von der archimedischen Anordnung Gebrauch gemacht?

Gruss

Bezug
                        
Bezug
Charakterisierung von R: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 So 06.10.2013
Autor: tobit09

Hallo phychem,


> Was mich noch etwas verwirrt: Im "Königsberger Analysis 1"
> findet man auf Seite 14 ein Beweis der Implikation
> Intervallschachtellungsprinzip => Supremumsaxiom (welches
> ja äquivalent zum Schnittaxiom ist) und ich hab eben im
> folgenden Skript auf Seite 40/41 ein Beweis der Implikation
> Intervallschachtellung => Schnittaxiom gefunden:
>  
> []Link
>  
> Überseh ich etwas? Wird in diesen Beweisen irgendwo
> indirekt von der archimedischen Anordnung Gebrauch gemacht?

Ja, in der Tat sehr versteckt. Beim Beweis von [mm] $\operatorname{diam}(I_m)\to0$ [/mm] für [mm] $m\to\infty$ [/mm] braucht man den zweiten Teil von Satz 2.3.6. Der wiederum wird mithilfe des ersten Teils von Satz 2.3.6 bewiesen. Beim Beweis dieses Teils wurde eine Konsequenz des archimedischen Axioms benutzt.


Viele Grüße
Tobias

Bezug
                                
Bezug
Charakterisierung von R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:52 So 06.10.2013
Autor: phychem

Danke für die Antwort. Ja, jetzt seh ich es auch.

Beim Beweis im Königsberger (Intervallschachtelungsprinzip => Supremumsaxiom) erkenn ich allerdings noch immer kein Gebrauch des archimedischen Axioms:


Ich hab den Beweis mal abgeschrieben als Bild hochgeladen:

[]Link



Bezug
                                        
Bezug
Charakterisierung von R: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Mo 07.10.2013
Autor: felixf

Moin!

> Danke für die Antwort. Ja, jetzt seh ich es auch.
>  
> Beim Beweis im Königsberger (Intervallschachtelungsprinzip
> => Supremumsaxiom) erkenn ich allerdings noch immer kein
> Gebrauch des archimedischen Axioms:
>  
>
> Ich hab den Beweis mal abgeschrieben als Bild hochgeladen:
>  
> []Link

Auch hier wird wieder Archimedes verwendet: naemlich in dem Teil, der dort nicht steht. Man muss ja noch zeigen, dass [mm] $\lim_{n\to\infty} (b_n [/mm] - [mm] a_n) [/mm] = 0$ ist. Da [mm] $b_n [/mm] - [mm] a_n [/mm] = [mm] 2^{-n+1} (b_1 [/mm] - [mm] a_1)$ [/mm] ist muss man im Prinzip zeigen, dass [mm] $2^{-n} \to [/mm] 0$ fuer $n [mm] \to \infty$. [/mm]

Genauer: du suchst zu $s - s'$ ein $n$ mit [mm] $2^{-n+1} (b_1 [/mm] - [mm] a_1) [/mm] < s - s'$. Und dafuer brauchst du auch wieder Archimedes, da [mm] $2^n$ [/mm] (eine natuerliche Zahl) hier groesser als die reelle Zahl [mm] $\frac{1}{s - s'} [/mm] > 0$ werden muss.

LG Felix


Bezug
                                                
Bezug
Charakterisierung von R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:44 Mo 07.10.2013
Autor: phychem

Ach stimmt, daran hab ich gar nicht gedacht (also die Konvergenz zu hinterfragen). Eigentlich der gleiche "Grund" wie im vorherigen Beweis...

Danke für diese sehr schlüssige Antwort.


Jetzt bin auch ich überzeugt :)



[mm] \IR [/mm] kann also als ordnungsvollständiger geordneter Körper oder (äquivalent dazu) als archimedisch geordneter und bzgl. des Absolutbetrags vollständiger Körper charakterisiert werden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]