matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesChar. Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Char. Polynome
Char. Polynome < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Char. Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Di 24.01.2012
Autor: Fabian.Dust

Aufgabe
Sei [mm] f: W \to W [/mm] ein Endomorphismus eines endlichdimensionalen K-Vektorraums W. Sei V = [mm] W^2 [/mm] und

[mm] g: V \to V, (w_1,w_2) \mapsto (f(w_2),w_1)) [/mm]

Zeigen Sie:

(a) [mm] X_g(t) [/mm] = [mm] X_f(t^2) [/mm]

Wieder mal weiß ich nicht weiter.

Was ich weiß, ist:

[mm]X_g(t) = |tE - A| \in K[t] [/mm]
[mm]X_f(t^2) = |t^2E - B| \in K[t] [/mm]

Wobei A und B Matrizen sind und [mm] X_g(t), X_f(t^2) [/mm] die char. Polynome von den Matrizen sind.

Zudem ist:

[mm] X_g(t) [/mm] = [mm] t^n [/mm] + [mm] c_n_-_1t^{n-1} [/mm] + ... + [mm] c_0 [/mm]

Nur weiß ich nicht, was es mir bringt.

Hat jemand einen kleinen Tipp für mich?

        
Bezug
Char. Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Di 24.01.2012
Autor: angela.h.b.


> Sei [mm]f: W \to W[/mm] ein Endomorphismus eines
> endlichdimensionalen K-Vektorraums W. Sei V = [mm]W^2[/mm] und
>  
> [mm]g: V \to V, (w_1,w_2) \mapsto (f(w_2),w_1))[/mm]
>  
> Zeigen Sie:
>  
> (a) [mm]X_g(t)[/mm] = [mm]X_f(t^2)[/mm]
>  Wieder mal weiß ich nicht weiter.
>  
> Was ich weiß, ist:
>  
> [mm]X_g(t) = |tE - A| \in K[t][/mm]
>  [mm]X_f(t^2) = |t^2E - B| \in K[t][/mm]
>  
> Wobei A und B Matrizen sind und [mm]X_g(t), X_f(t^2)[/mm] die char. Polynome von den Matrizen sind.

Hallo,

das sind nicht irgendwelche Matrizen, sondern die Darstellungsmatrizen der Abbildungen.

Wenn W endlichdimensional ist, hat W eine Basis [mm] B:=(b_1,...,b_n) [/mm]

Ich würde mir jetzt eine Basis von V überlegen,
die Darstellungsmatrizen aufschreiben,
ihr charakteristisches Polynom berechnen.

LG Angela

>  
> Zudem ist:
>  
> [mm]X_g(t)[/mm] = [mm]t^n[/mm] + [mm]c_n_-_1t^{n-1}[/mm] + ... + [mm]c_0[/mm]
>  
> Nur weiß ich nicht, was es mir bringt.
>  
> Hat jemand einen kleinen Tipp für mich?


Bezug
                
Bezug
Char. Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Di 24.01.2012
Autor: Fabian.Dust

Hey,

danke für die Antwort.

Kann ich mir irgendeine Basis auspicken oder muss das schon allgemein sein?

Wenn ich eine Basis auswählen dürfte, dann würde ich die Einheitsvektoren nehmen und dann die Darstellungsmatrix aufstellen.

Dann hätte ich für [mm] X_f(t^2) [/mm] folgendes:

[mm] X_f(t^2) [/mm] = [mm] (t^2 [/mm] - [mm] 1)^n [/mm]

Darf ich das?

(Und für die Abb. g stehe ich immernoch auf dem Schlauch, da ich nicht weiß, wie man da die Basen bestimmt...)

Bezug
                        
Bezug
Char. Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 05:02 Mi 25.01.2012
Autor: angela.h.b.


> Hey,
>  
> danke für die Antwort.
>  
> Kann ich mir irgendeine Basis auspicken oder muss das schon
> allgemein sein?

Hallo,

Du hast einen VR W, der endlichdimensional ist.
Was meinst Du mit "Basis herauspicken"?

>  
> Wenn ich eine Basis auswählen dürfte, dann würde ich die
> Einheitsvektoren nehmen

Was meinst Du hier mit "die Einheitsvektoren"?
Daß W nicht zwingend eine Teilmenge des [mm] \IR^n [/mm] ist, ist Dir klar?

Du weißt halt, daß es ein Vektorraum endlicher Dimension ist.
Das garantiert Dir die Existenz einer Basis [mm] B:=(b_1,..., b_n). [/mm]
Die nimmst Du. Fertig.


> und dann die Darstellungsmatrix
> aufstellen.

Wie stellt man eigentlich die Darstellungsmatrix einer Abbildung bzgl. einer vorgegebenen Basis auf?
(Daß diese hier sehr allgemein gehalten sein muß, versteht sich ja von selbst, denn wir wissen ja nichts Näheres über f.)

>  
> Dann hätte ich für [mm]X_f(t^2)[/mm] folgendes:
>  
> [mm]X_f(t^2)[/mm] = [mm](t^2[/mm] - [mm]1)^n[/mm]
>  
> Darf ich das?
>  
> (Und für die Abb. g stehe ich immernoch auf dem Schlauch,
> da ich nicht weiß, wie man da die Basen bestimmt...)

Ich würde mir an Deiner Stelle vor der Bearbeitung der allgemeinen Aufgabe mal ein Beispiel machen.

Nimm z.B. für W den VR der Polynome vom Höchstgrad 2.
Basis?
Was ist dann V?
Basis?

Sei [mm] f:W\to [/mm] W mit [mm] f(ax^2+bx+c):=(a+c)x^2-a. [/mm]
Darstellungsmatrix von f bzgl der oben genannten Basis?

Darstellungsmatrix von g bzgl der oben genannten Basis?

LG Angela


Bezug
                                
Bezug
Char. Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:19 Do 26.01.2012
Autor: Fabian.Dust

Oh mann, dankeschön!

Manchmal brauche ich so einen Schubs in die richtige Richtung!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]