matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieCavalierische Prinzip
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maßtheorie" - Cavalierische Prinzip
Cavalierische Prinzip < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cavalierische Prinzip: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:24 Sa 30.11.2013
Autor: EvelynSnowley2311

Aufgabe
Sei ( [mm] \Omega_1 [/mm] , [mm] \mathcal{A}_1 [/mm] , [mm] \mu) [/mm] = (  [mm] \IR^2, \mathcal{B}^2 [/mm] , [mm] \lambda^2) [/mm] , ( [mm] \Omega_2 [/mm] , [mm] \mathcal{A}_2 [/mm] , [mm] \nu) [/mm] = [mm] (\IR [/mm] , [mm] \mathcal{B} [/mm] , [mm] \lambda) [/mm]
Berechnen Sie folgende Volumina:

(r > 0 Konstante)
M := { (x,y,z) [mm] \in \IR^3 [/mm] |  [mm] x^2 [/mm] + [mm] y^2 [/mm] + [mm] z^2 \le r^2 [/mm] , z [mm] \ge [/mm] 0 }
N := {(x,y,z)  [mm] \in \IR^3 [/mm] | [mm] z^2 \le x^2 +y^2 \le r^2 [/mm] , z [mm] \ge [/mm] 0 }

Huhu zusammen,

also an sich weiß ich wie man es auf normale Weise mit Transformationen ausrechnet, aber ich solls wohl mit dieser Cavalieri Schreibweise machen.
(Ergebnis müsste um [mm] \bruch{2}{3} \pi r^3 [/mm] liegen)

Nach Def. ist zu berechnen

[mm] \lambda^3 [/mm] = [mm] \lambda^2 \otimes \lambda [/mm]

Ich weiß, das erste ist eine Halbkugel, und eig ist

http://de.wikiversity.org/wiki/Allgemeines_Kugelvolumen/Mit_Cavalieri-Prinzip/Beispiel

ganz gut erklärt, aber so wirklich verstehen tu ichs nicht. Wenn ich mich aber an das gepostet Beispiel ähnlich halte:

Man betrachtet [mm] M_3 \subseteq \IR^2 [/mm] x [mm] [0,\infty) [/mm]

M :=  { (x,y,z) [mm] \in \IR^3 [/mm] |  [mm] x^2 [/mm] + [mm] y^2 [/mm] + [mm] z^2 \le r^2 [/mm] , z [mm] \ge [/mm] 0 }
  = {(x,y) [mm] \in \IR^2 [/mm] | [mm] x^2 [/mm] + [mm] y^2 \le r^2 -z^2 [/mm] , z [mm] \ge [/mm] 0}

Man betrachtet also einen Kreis mit dem Radius [mm] \wurzel{r^2-z^2} [/mm]
      
  = { x [mm] \in \IR [/mm] | [mm] x^2 \le r^2 [/mm] - [mm] y^2 [/mm] - z ^2 , z [mm] \ge [/mm] 0 }

Man betrachtet hier ein Intervall
[ [mm] -\wurzel{r^2-y^2-z^2} [/mm] ,
[mm] \wurzel{r^2-y^2-z^2} [/mm] ] ,z [mm] \ge [/mm] 0, also der Länge 2 * [mm] \wurzel{r^2-y^2-z^2} [/mm]

Nun ist [mm] \lambda^2 \otimes \lambda [/mm] :=

[mm] \integral_{\IR^2} \lambda (M_{x,y}) [/mm] d [mm] \lambda^2 [/mm] (mit dem M bin ich unsicher ob [mm] M_x [/mm] oder [mm] M_{x,y} [/mm] )


= ?

2 * [mm] \integral_{\IR^2} \wurzel{r^2 - y^2 -z^2 } [/mm] d [mm] \lambda^2 [/mm]

Falls dies richtig ist, wie macht man weiter?
Integriere ich normal
etwa

2 * [mm] \integral_{0}^{r} \integral_{- \wurzel{r^2-z^2}}^{\wurzel{r^2-z^2}} \wurzel{r^2 - y^2 -z^2 } [/mm] dy dz

oder gehts weiter mit Cavalierie?

Würde mich über Hilfe freuen :)

Lg,

Eve

        
Bezug
Cavalierische Prinzip: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mo 02.12.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]