matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Cauchyscher Mittelwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Cauchyscher Mittelwertsatz
Cauchyscher Mittelwertsatz < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchyscher Mittelwertsatz: Idee
Status: (Frage) beantwortet Status 
Datum: 11:21 Sa 27.11.2010
Autor: Christoph87

Aufgabe
Sei [mm]f: [a;b] \to \IR[/mm] stetig, aber nicht stetig differenzierbar und [mm]g: [a;b] \to \IR[/mm] integrierbar. Zudem sei [mm]g \le 0 \vee g \ge 0[/mm]. Finde eine Funktion [mm]f[/mm] sodass kein [mm]\nu \in (a;b)[/mm] existiert, so dass [mm]\integral_{a}^{b}{f(x)g(x) dx}=f(\nu)\integral_{a}^{b}{g(x) dx}[/mm].

Hallo,
ich weiß dass so ein [mm]\nu[/mm] existiert, falls f stetig differenzierbar ist. Also muss die gesuchte Funktion wie es in der Aufgabe steht stetig, aber nicht stetig differenzierbar sein - also einen "Knick" enthalten? Ich habe schon ein paar Funktionen ausprobiert, war bisher jedoch nicht erfolgreich. Hat wer einen Tipp für mich?

        
Bezug
Cauchyscher Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Sa 27.11.2010
Autor: ullim

Hi,

bist Du sicher das die Aufgabe so gestellt wurde, s. dazu []hier "Erweiterter Mittelwertsatz der Intgralrechnung" Seite 6, oder habe ich was übersehen?


Bezug
                
Bezug
Cauchyscher Mittelwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 Sa 27.11.2010
Autor: Christoph87

Hallo,
vielen Dank. Das würde erklären warum ich nichts gefunden habe :)

Bezug
                        
Bezug
Cauchyscher Mittelwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Sa 27.11.2010
Autor: ullim

Hi, das schon, aber die Aufgabe ist doch dann Quatsch oder?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]