matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisCauchyscher Integralsatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Cauchyscher Integralsatz
Cauchyscher Integralsatz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchyscher Integralsatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:18 Fr 12.12.2008
Autor: Framl

Aufgabe
Sei [mm] $U\subset\IC$ [/mm] eine offene Menge, [mm] $p\in [/mm] U$  und $ f : U \ [mm] \{ p \} \to \IC$ [/mm] eine
holomorphe Funktion. Weiterhin sei [mm] $\Delta\subset [/mm] U$ ein Dreieck mit [mm] $p\in \Delta$ [/mm] (offener Kern) und [mm] $B\subset [/mm] U$ eine
Kreisscheibe mit [mm] $p\in [/mm] B$ (offener Kern). Zeigen Sie: [mm] $\integral_{\partial\Delta} f=\integral_{\partial B}f$ [/mm]

Hallo zusammen,

ich bin beim Stöbern durchs Internet auf diese Aufgabe gestossen und weiß nicht genau, wie man diese lösen soll:

Zunächst war meine Idee, das ich [mm] $\int_{\partial B}f$ [/mm] auch berechnen darf, indem ich das Integral um eine Kreisscheibe berechne, von der $p$ der Mittelpunkt ist. Bringt mich das weiter? Wenn ja, wie mache ich danach weiter?

Könnte man auch sagen: Da [mm] $B\subset [/mm] U$ kompakt ist, gibt es eine (offene) Kugel $V$ um $p$, die $B$ enthält und noch ganz in $U$ liegt. Dann ist $V$ ein Sterngebiet und der Cauchysche Integralsatz gilt, d.h. beide Integrale haben den Wert $0$.

Dann wäre meine Frage: Wieso gilt der Satz immer noch, wenn $f$ bis auf einen Punkt $p$ holomorph ist?

Gruß, Framl



        
Bezug
Cauchyscher Integralsatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 So 14.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]