matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisCauchyformel-Fkt./Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Cauchyformel-Fkt./Ableitung
Cauchyformel-Fkt./Ableitung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchyformel-Fkt./Ableitung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:30 Mi 01.06.2011
Autor: Rubstudent88

Aufgabe 1
(1) Es seien [mm] z_{1},...,z_{n} [/mm] paarweise verschiedene komplexe Zahlen, R>0 mit [mm] z_{j} \not\in \partial \Delta_{R} [/mm] für alle j=1,...,n und f:  [mm] \IC \to \IC; [/mm] z [mm] \mapsto \produkt_{i=1}^{n} (z-z_{j}). [/mm] Zeigen Sie:
[mm] \bruch{1}{2\pi i}\integral_{\partial \Delta_{R}}{\bruch{f' } {f} dz} [/mm]
mit f´ [mm] =\bruch{\partial f}{\partial z} [/mm] ist die Anzahl der Nullstellen von f in [mm] \Delta_{R}. [/mm]

Aufgabe 2
(2) Es sei [mm] z_{0} \in \IC [/mm] und [mm] \gamma=\partial \Delta_{R}(z_{0}) [/mm] mit r [mm] \in \IR^{>0}. [/mm] Berechnen Sie: [mm] \integral_{\gamma}{\bruch{f' } {f} dz} [/mm]
für f: [mm] \IC \to \IC; [/mm] z [mm] \mapsto (z-z_{0})^{n} [/mm] mit n [mm] \in \IZ [/mm] fest.

Hallo zusammen,

ich bräuchte bei obiger Aufgabe eure Hilfe.

Zu Teil (1):

Zuerst möchte ich mein f ableiten:
[mm] f'=1*\produkt_{i=2}^{n}(z-z_{j})+(\bruch{\partial}{\partial z}\produkt_{i=2}^{n}(z-z_{j})*(z-z_{1})) [/mm]
Hat jemand eine Idee wie ich das am besten vereinfache? Mein Ziel ist irgendetwas wegzukürzen, so dass ich über die Cauchy-Integrationsformel mit der Anzahl der Nullstellen argumentieren kann.
Ist das der richtige Ansatz?

Zu Teil (2):

[mm] f'=1*(z-z_{0})^{n-1} [/mm]

[mm] \bruch{f'}{f}=\bruch{n}{z-z_{0}} [/mm]

Wie sieht dann mein Integral aus, was ich ausrechnen muss?

Beste Grüße


        
Bezug
Cauchyformel-Fkt./Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Mi 01.06.2011
Autor: fred97


> (1) Es seien [mm]z_{1},...,z_{n}[/mm] paarweise verschiedene
> komplexe Zahlen, R>0 mit [mm]z_{j} \not\in \partial \Delta_{R}[/mm]
> für alle j=1,...,n und f:  [mm]\IC \to \IC;[/mm] z [mm]\mapsto \produkt_{i=1}^{n} (z-z_{j}).[/mm]
> Zeigen Sie:
>  [mm]\bruch{1}{2\pi i}\integral_{\partial \Delta_{R}}{\bruch{f' } {f} dz}[/mm]
>  
> mit f´ [mm]=\bruch{\partial f}{\partial z}[/mm] ist die Anzahl der
> Nullstellen von f in [mm]\Delta_{R}.[/mm]
>  (2) Es sei [mm]z_{0} \in \IC[/mm] und [mm]\gamma=\partial \Delta_{R}(z_{0})[/mm]
> mit r [mm]\in \IR^{>0}.[/mm] Berechnen Sie:
> [mm]\integral_{\gamma}{\bruch{f' } {f} dz}[/mm]
>  für f: [mm]\IC \to \IC;[/mm]
> z [mm]\mapsto (z-z_{0})^{n}[/mm] mit n [mm]\in \IZ[/mm] fest.
>  Hallo zusammen,
>  
> ich bräuchte bei obiger Aufgabe eure Hilfe.
>  
> Zu Teil (1):
>  
> Zuerst möchte ich mein f ableiten:
>  
> [mm]f'=1*\produkt_{i=2}^{n}(z-z_{j})+(\bruch{\partial}{\partial z}\produkt_{i=2}^{n}(z-z_{j})*(z-z_{1}))[/mm]
>  
> Hat jemand eine Idee wie ich das am besten vereinfache?
> Mein Ziel ist irgendetwas wegzukürzen, so dass ich über
> die Cauchy-Integrationsformel mit der Anzahl der
> Nullstellen argumentieren kann.
>  Ist das der richtige Ansatz?

Es ist [mm] $f(z)=(z-z_1)g(z)$ [/mm] mit [mm] $g(z):=\produkt_{j=2}^{n} (z-z_{j}). [/mm] $

Zeige nun:

                 [mm] \bruch{f'(z)}{f(z)}= \bruch{1}{z-z_1}+ \bruch{g'(z)}{g(z)}$ [/mm]

Mit g verfahre genauso. Dann erhältst Du eine schöne und brauchbare Darstellung von  [mm] \bruch{f'(z)}{f(z)} [/mm]

Beispiel: n=2. Dann ist [mm] g(z)=z-z_2 [/mm] und somit  

               [mm] \bruch{f'(z)}{f(z)}= \bruch{1}{z-z_1}+ \bruch{1}{z-z_2} [/mm]

Verallgemeinere dies.

>  
> Zu Teil (2):
>  
> [mm]f'=1*(z-z_{0})^{n-1}[/mm]

Nein.  [mm]f'(z)=n*(z-z_{0})^{n-1}[/mm]

>  
> [mm]\bruch{f'}{f}=\bruch{n}{z-z_{0}}[/mm]
>  
> Wie sieht dann mein Integral aus, was ich ausrechnen muss?

So:    [mm] $\integral_{\gamma}{\bruch{n}{z-z_{0}}dz} [/mm] $

FRED

>  
> Beste Grüße
>  


Bezug
                
Bezug
Cauchyformel-Fkt./Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Mi 01.06.2011
Autor: Rubstudent88

Erstmal vielen Dank für die Antwort Fred, der erste Teil ist nachvollziehbar, danke.

Zum zweiten Teil. Dass das Integral so aussehen muss, war mir auch soweit klar, nur meine Frage ist, wie ich damit weiterechne. Ich brauche wohl eine Parametrisierung für mein [mm] \gamma. [/mm] Wäre dies eine?: [mm] (x+rcos\Phi,y+rsin\Phi) [/mm] Oder direkt mit Polarkoordinaten arbeiten?

Bezug
                        
Bezug
Cauchyformel-Fkt./Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Mi 01.06.2011
Autor: rainerS

Hallo!

> Erstmal vielen Dank für die Antwort Fred, der erste Teil
> ist nachvollziehbar, danke.
>  
> Zum zweiten Teil. Dass das Integral so aussehen muss, war
> mir auch soweit klar, nur meine Frage ist, wie ich damit
> weiterechne. Ich brauche wohl eine Parametrisierung für
> mein [mm]\gamma.[/mm]

Nein, du kannst doch direkt die Integralformel von Cauchy benutzen.

Viele Grüße
   Rainer

Bezug
                        
Bezug
Cauchyformel-Fkt./Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Do 02.06.2011
Autor: fred97


> Erstmal vielen Dank für die Antwort Fred, der erste Teil
> ist nachvollziehbar, danke.
>  
> Zum zweiten Teil. Dass das Integral so aussehen muss, war
> mir auch soweit klar, nur meine Frage ist, wie ich damit
> weiterechne. Ich brauche wohl eine Parametrisierung für
> mein [mm]\gamma.[/mm] Wäre dies eine?: [mm](x+rcos\Phi,y+rsin\Phi)[/mm] Oder
> direkt mit Polarkoordinaten arbeiten?

Ihr hattet sicher die "Umlaufzahl" oder "Windungszahl"

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]