matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenCauchyfolge fast geschafft
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Cauchyfolge fast geschafft
Cauchyfolge fast geschafft < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchyfolge fast geschafft: Wink
Status: (Frage) beantwortet Status 
Datum: 22:46 Sa 19.11.2011
Autor: saendra

Aufgabe
hey! Bin dabei bei dieser folge hier [mm] a_n=1+\frac {(-1)^n}{n^3} [/mm] die Cauchyfolgen-Eigenschaft nachzuweisen.

Dazu hab ich ein [mm] \varepsilon [/mm] >0  und ein [mm] n_0 [/mm] so gewählt, dass [mm] n_0 [/mm] > [mm] \frac {1}{\varepsilon } [/mm] ist.

Mit n $ [mm] \geq [/mm] $ k $ [mm] \geq n_0 [/mm] $ bekomm ich nach der definition der cauchyfolge:
[mm] \left|a_n-a_k\right| [/mm] = [mm] \left| 1+\frac {(-1)^n}{n^3} - \left(1+\frac {(-1)^k}{k^3}\right)\right| [/mm] = [mm] \left| 1+\frac {(-1)^n}{n^3} -1-\frac {(-1)^k}{k^3}\right| [/mm] = [mm] \left| \frac {(-1)^n}{n^3} -\frac {(-1)^k}{k^3}\right| [/mm] = [mm] \left| \frac {k^3(-1)^n}{k^3n^3} -\frac {n^3(-1)^k}{k^3n^3}\right| [/mm] = [mm] \left| \frac {k^3(-1)^n-n^3(-1)^k}{k^3n^3}\right| [/mm]

der entscheidende schritt fehlt mir dann aber... wie komm ich jetzt weiter? muss ich eine fallunterscheidung machen wegen dem [mm] (-1)^{bla}? [/mm]


        
Bezug
Cauchyfolge fast geschafft: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Sa 19.11.2011
Autor: donquijote


> hey! Bin dabei bei dieser folge hier [mm]a_n=1+\frac {(-1)^n}{n^3}[/mm]
> die Cauchyfolgen-Eigenschaft nachzuweisen.
>  Dazu hab ich ein [mm]\varepsilon[/mm] >0  und ein [mm]n_0[/mm] so gewählt,
> dass [mm]n_0[/mm] > [mm]\frac {1}{\varepsilon }[/mm] ist.
>  
> Mit n [mm]\geq[/mm] k [mm]\geq n_0[/mm] bekomm ich nach der definition der
> cauchyfolge:
> [mm]\left|a_n-a_k\right|[/mm] = [mm]\left| 1+\frac {(-1)^n}{n^3} - \left(1+\frac {(-1)^k}{k^3}\right)\right|[/mm]
> = [mm]\left| 1+\frac {(-1)^n}{n^3} -1-\frac {(-1)^k}{k^3}\right|[/mm]
> = [mm]\left| \frac {(-1)^n}{n^3} -\frac {(-1)^k}{k^3}\right|[/mm]

[mm] $\le\left| \frac {(-1)^n}{n^3}\right|+\left| \frac {(-1)^k}{k^3}\right|=\frac{1}{n^3}+\frac{1}{k^3}\le\frac{2}{n_0^3}$ [/mm]

> [mm]=\left| \frac {k^3(-1)^n}{k^3n^3} -\frac {n^3(-1)^k}{k^3n^3}\right|[/mm]
> = [mm]\left| \frac {k^3(-1)^n-n^3(-1)^k}{k^3n^3}\right|[/mm]
>  
> der entscheidende schritt fehlt mir dann aber... wie komm
> ich jetzt weiter? muss ich eine fallunterscheidung machen
> wegen dem [mm](-1)^{bla}?[/mm]
>  


Bezug
                
Bezug
Cauchyfolge fast geschafft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 Sa 19.11.2011
Autor: saendra

vielen dank erstmal :-)

hast du bei diesem schritt: ... [mm] =\left| \frac {(-1)^n}{n^3} -\frac {(-1)^k}{k^3}\right| \le\left| \frac {(-1)^n}{n^3}\right|+\left| \frac {(-1)^k}{k^3}\right|= [/mm] ...

die dreiecksungleichung benutzt? weil es ist doch [mm] |a-b|\not=|a+b| [/mm]

oder falls ich da auf dem falschen dampfer bin: wieso kann du diesen schritt so machen?

Bezug
                        
Bezug
Cauchyfolge fast geschafft: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Sa 19.11.2011
Autor: leduart

Hallo
ja er hat die Dreiecksungleichung benutz|a-b|=|a+(-b)| also kannst du die gewohnte dreiecksungl benutzen. Vorsicht! sicher NICHT mit dem - dazwischen!
Gruss leduart

Bezug
                                
Bezug
Cauchyfolge fast geschafft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 Sa 19.11.2011
Autor: saendra

danke! also ich hab noch 2 zwischenschritte eingefügt

... [mm] =\left| \frac {(-1)^n}{n^3} -\frac {(-1)^k}{k^3}\right|= [blue]\left| \frac {(-1)^n}{n^3} +\left(-\frac {(-1)^k}{k^3}\right)\right| \le \left| \frac {(-1)^n}{n^3}\right|+\left| -\frac {(-1)^k}{k^3}\right|[/blue] [/mm] = [mm] \left| \frac {(-1)^n}{n^3}\right|+\left| \frac {(-1)^k}{k^3}\right|= [/mm] ...

so richtig?

Bezug
                                        
Bezug
Cauchyfolge fast geschafft: Antwort
Status: (Antwort) fertig Status 
Datum: 23:53 Sa 19.11.2011
Autor: leduart

Hallo
richtig ist es, aber wohl nicht nötig, da es einfach aus der eigenschaft von beträgen folgt. aber wenn du es so beser siehst  und merken kannst ist es gut so.
gruss leduart

Bezug
                                                
Bezug
Cauchyfolge fast geschafft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:59 Sa 19.11.2011
Autor: saendra

danke :-)

eine winzigkeit bereitet mir noch sorgen: [mm] ...\left| \frac {(-1)^n}{n^3}\right|+\left| \frac {(-1)^k}{k^3}\right|=\frac{1}{n^3}+\frac{1}{k^3}\le\frac{2}{n_0^3} [/mm]

fallen die [mm] (-1)^{bla} [/mm] einfach weg wenn ich den btrag "zieh"? (was ist eigentlich die fachbezeichung für "betrag ziehen"?)

und wie kommt man auf die die 2 im zähler bei [mm] \frac{2}{n_0^3} [/mm]

Bezug
                                                        
Bezug
Cauchyfolge fast geschafft: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 So 20.11.2011
Autor: leduart

hallo
[mm] (-1)^k [/mm] kann 1 oder -1 sein also ist der Betrag immer 1.
man sagt den Betrag von ...nehmen (oder bilden)
gruss leduart

Bezug
                                                                
Bezug
Cauchyfolge fast geschafft: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:23 So 20.11.2011
Autor: saendra

vielen dank euch! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]