matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenCauchyfolge ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Cauchyfolge ?
Cauchyfolge ? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchyfolge ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Do 23.10.2008
Autor: SusanneK

Aufgabe
[mm]s_n:=\summe_{k=1}^{n}\bruch{1}{k}=1+\bruch{1}{2}+...\bruch{1}{n} [/mm] ist keine Cauchyfolge, also divergent.

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo,
ich versehe die Cauchyfolge nicht.
Es heisst im Skript: Eine Folge f ist genau dann konvergent, wenn sie eine Cauchyfolge ist.

Das ist doch eine Äquivalenzaussage, gilt also auch anders herum.
Irgend etwas verstehe ich hier nicht:
Die Folge oben konvergiert doch gegen 2 - müsste doch dann eine Cauchyfolge sein ?
Was verstehe ich hier falsch ?

Danke, Susanne.



        
Bezug
Cauchyfolge ?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Do 23.10.2008
Autor: Tyskie84

Hallo,

>
> [mm]s_n:=\summe_{k=1}^{n}\bruch{1}{k}=1+\bruch{1}{2}+...\bruch{1}{n}[/mm]
> ist keine Cauchyfolge, also divergent.
>  Ich habe diese Frage in keinem anderen Forum gestellt.
>  
> Hallo,
>  ich versehe die Cauchyfolge nicht.
>  Es heisst im Skript: Eine Folge f ist genau dann
> konvergent, wenn sie eine Cauchyfolge ist.
>  
> Das ist doch eine Äquivalenzaussage, gilt also auch anders
> herum.
>  Irgend etwas verstehe ich hier nicht:
>  Die Folge oben konvergiert doch gegen 2 - müsste doch dann
> eine Cauchyfolge sein ?
>  Was verstehe ich hier falsch ?
>  

das ist doch eine harmonische Reihe. Und diese konvergiert bekanntlich nicht.

> Danke, Susanne.
>  
>  

[hut] Gruß

Bezug
                
Bezug
Cauchyfolge ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 Do 23.10.2008
Autor: SusanneK

Vielen DANK für deine Hilfe !

Ich habe [mm] k^2 [/mm] gerechnet ...
Im Vorteil ist, wer lesen kann ;-)

Bezug
                        
Bezug
Cauchyfolge ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:48 Do 23.10.2008
Autor: Tyskie84

Hallo,

nur so noch also Zusatzinformation:

Wenn [mm] \summe_{k=1}^{n}\bruch{1}{k} [/mm] divergiert dann auch [mm] \summe_{k=1}^{n}\bruch{1}{k²} [/mm] nach Majorantenkriterium :-)

[hut] Gruß

Bezug
                                
Bezug
Cauchyfolge ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 Do 23.10.2008
Autor: abakus


> Hallo,
>  
> nur so noch also Zusatzinformation:
>  
> Wenn [mm]\summe_{k=1}^{n}\bruch{1}{k}[/mm] divergiert dann auch
> [mm]\summe_{k=1}^{n}\bruch{1}{k²}[/mm] nach Majorantenkriterium :-)

Bitte???  [mm]\summe_{k=1}^{n}\bruch{1}{k²}[/mm] konvergiert.
Gruß Abakus

>  
> [hut] Gruß


Bezug
                                
Bezug
Cauchyfolge ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:37 Do 23.10.2008
Autor: Marcel

Hallo,

> Hallo,
>  
> nur so noch also Zusatzinformation:
>  
> Wenn [mm]\summe_{k=1}^{n}\bruch{1}{k}[/mm] divergiert dann auch
> [mm]\summe_{k=1}^{n}\bruch{1}{k²}[/mm] nach Majorantenkriterium :-)

nö:

[mm] $\sum_{k=1}^\infty \frac{1}{k^2} \le \sum_{k=1}^\infty \frac{1}{k}=\infty$ [/mm]

Hier erkennt man gar nichts nach dem Majorantenkriterium. Irgendwie hast Du wohl falsch abgeschätzt.

Dass [mm] $\sum_{k=1}^\infty \frac{1}{k^2}$ [/mm] konvergiert, dafür gibt es zwei Wege:
Man denkt an den Cauchyschen Verdichtungssatz (nicht Vernichtungssatz, wie ich mal lustigerweise lesen durfte ;-)), oder aber man benutzt

[mm] $\frac{1}{k^2} \le \frac{1}{k(k-1)}=\frac{1}{k-1}-\frac{1}{k}$ [/mm] für $k > [mm] 1\,.$ [/mm]

(Dann kann man [mm] $\sum_{k=1}^\infty \frac{1}{k^2}=1+\sum_{k=2}^\infty \frac{1}{k^2} \le 1+\sum_{k=2}^\infty\left(\frac{1}{k-1}-\frac{1}{k}\right)$ [/mm] schreiben und ganz rechts steht eine Ziehharmonikareihe.)

Gruß,
Marcel

Bezug
        
Bezug
Cauchyfolge ?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Do 23.10.2008
Autor: abakus


>
> [mm]s_n:=\summe_{k=1}^{n}\bruch{1}{k}=1+\bruch{1}{2}+...\bruch{1}{n}[/mm]
> ist keine Cauchyfolge, also divergent.
>  Ich habe diese Frage in keinem anderen Forum gestellt.
>  
> Hallo,
>  ich versehe die Cauchyfolge nicht.
>  Es heisst im Skript: Eine Folge f ist genau dann
> konvergent, wenn sie eine Cauchyfolge ist.
>  
> Das ist doch eine Äquivalenzaussage, gilt also auch anders
> herum.
>  Irgend etwas verstehe ich hier nicht:
>  Die Folge oben konvergiert doch gegen 2

Tut sie nicht. Bereits 1+1/2+1/3+1/4 ist größer als 2, und es kommen noch unendlich viele Summanden dazu.
Gruß Abakus

> - müsste doch dann
> eine Cauchyfolge sein ?
>  Was verstehe ich hier falsch ?
>  
> Danke, Susanne.
>  
>  


Bezug
                
Bezug
Cauchyfolge ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Do 23.10.2008
Autor: SusanneK

Auweia,
DANKE für deine Hilfe !

Ich habe [mm] k^2 [/mm] gerechnet ...
Im Vorteil ist, wer lesen kann ;-)

Bezug
        
Bezug
Cauchyfolge ?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Do 23.10.2008
Autor: Marcel

Hallo,

>
> [mm]s_n:=\summe_{k=1}^{n}\bruch{1}{k}=1+\bruch{1}{2}+...\bruch{1}{n}[/mm]
> ist keine Cauchyfolge, also divergent.
>  Ich habe diese Frage in keinem anderen Forum gestellt.
>  
> Hallo,
>  ich versehe die Cauchyfolge nicht.
>  Es heisst im Skript: Eine Folge f ist genau dann
> konvergent, wenn sie eine Cauchyfolge ist.
>  
> Das ist doch eine Äquivalenzaussage, gilt also auch anders
> herum.
>  Irgend etwas verstehe ich hier nicht:
>  Die Folge oben konvergiert doch gegen 2 - müsste doch dann
> eine Cauchyfolge sein ?
>  Was verstehe ich hier falsch ?
>  
> Danke, Susanne.

es wurde ja schon bereits angedeutet, dass die Reihe [mm] $\summe_{k=1}^{\infty}\bruch{1}{k}$, [/mm] also die Folge der Teilsummen [mm] $\left(\summe_{k=1}^{n}\bruch{1}{k}\right)_{n \in \IN} \equiv:(s_n)_{n \in \IN}$, [/mm] divergiert.

Es geht aber hier doch eigentlich darum, eben genau dieses zu beweisen. Und da steht der Tipp mit der Cauchyfolge.

Und dass [mm] $(s_n)_n$ [/mm] keine Cauchyfolge ist, erkennt man, wenn man für $n [mm] \in \IN$ [/mm] mal [mm] $s_{2n}-s_n$ [/mm] berechnet und nach unten abschätzt.

Ich denke nicht, dass es in der Aufgabe darum geht, nur zu sagen: Die harmonische Reihe divergiert.

Sondern es geht darum, einen Beweis zu liefern, warum sie divergiert.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]