matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteCauchy-Schwarz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Skalarprodukte" - Cauchy-Schwarz
Cauchy-Schwarz < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Schwarz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:13 Mi 09.09.2009
Autor: Tyhorr

Hi,
ich hab' diese Frage zwar schon im Numerikforum gestellt, aber ich formulier' sie einfach um. Ist im Grunde LA.

Also:
|<Cx,y>| [mm] \le [/mm] ||C|| ||x|| ||y||

Warum gilt hier nun Gleichheit, wenn C:=yx*, wobei C [mm] \in \IC^{nxn} [/mm] und x* adjungierter Eigenvektor zum EW [mm] z_{0}', [/mm] y Eigenvektor zum EW [mm] w_{0}? [/mm]
Und warum ist ||yx*|| = ||x|| ||y||?
Mir alles völlig schleierhaft...

Achso, es wird die Spektralnorm für die Matrix und der Betrag für den Rest verwendet.

Nun ja, thx!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Cauchy-Schwarz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Mi 09.09.2009
Autor: felixf

Hallo!

> Hi,
> ich hab' diese Frage zwar schon im Numerikforum gestellt,
> aber ich formulier' sie einfach um. Ist im Grunde LA.
>  
> Also:
>  |<Cx,y>| [mm]\le[/mm] ||C|| ||x|| ||y||
>  
> Warum gilt hier nun Gleichheit, wenn C:=yx*, wobei C [mm]\in \IC^{nxn}[/mm]
> und x* adjungierter Eigenvektor zum EW [mm]z_{0}',[/mm] y
> Eigenvektor zum EW [mm]w_{0}?[/mm]

Verstehe ich so die Aussage richtig?

[mm] $\forall [/mm] C [mm] \in \IC^{n \times n} \forall [/mm] x, y [mm] \in \IC^n [/mm] : [mm] (|\langle [/mm] C x , y [mm] \rangle| [/mm] = [mm] \|C\| \|x\| \|y\| \Leftrightarrow \exists z_0', w_0 \in \IC [/mm] : C y = [mm] w_0 [/mm] y, [mm] x^\ast [/mm] C = [mm] z_0' x^\ast, [/mm] C = y [mm] x^\ast)$ [/mm]


Wie man das ganze angehen koennte: du hast ja zwei Ungleichungen: [mm] $|\langle [/mm] C x, y [mm] \rangle| \le \|C x\| \|y\| \le \|C\| \|x\| \|y\|$. [/mm]

Bei der ersten gilt Gleichheit genau dann, wenn $C x$ und $y$ linear abhaengig sind. (Das ist eine Eigenschaft der Cauchy-Schwarzschen Ungleichung)

Jetzt musst du zeigen, dass ($C x$, $y$ linear abhaengig und [mm] ($\|C x\| [/mm] = [mm] \|C\| \|x\|$ [/mm] oder $y = 0$)) aequivalent zu [mm] $\exists z_0', w_0 \in \IC [/mm] : C y = [mm] w_0 [/mm] y, [mm] x^\ast [/mm] C = [mm] z_0' x^\ast, [/mm] C = y [mm] x^\ast)$ [/mm] ist.

Allerdings: ist $y = 0$ und $C [mm] \neq [/mm] 0$ beliebig, so gilt [mm] $|\langle [/mm] C x, y [mm] \rangle| [/mm] = 0 = [mm] \|C\| \|x\| \|y\|$, [/mm] jedoch $y [mm] x^\ast [/mm] = 0 [mm] \neq [/mm] C$.

Also fehlt noch etwas an der Aussage?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]