Cauchy-Produkt < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 19:47 So 04.12.2005 | Autor: | roxy |
Hallo!
hab folgende Aufgabe:
Berechne das Cauchy-Produkt von [mm] \summe_{k=0}^{\infty}q^k [/mm] mit sich selbst für [mm] q\in\IC [/mm] mit |q| < 1 und folgere: [mm] \summe_{k=1}^{\infty}kq^{k-} [/mm] = [mm] 1+2q+3q^2+...= \frac{1}{(1-q)^2}. [/mm] Verallgemeinere die Reihe zu eine Reihendarstellung von [mm] \frac{1}{(1-q)^m} [/mm] für [mm] m\in\IN [/mm] und |q| < 1.
ich habe den Cauchy-Produkt mit sich selbst geschrieben, u.z.:
[mm] (\summe_{k=0}^{\infty}q^k)*(\summe_{k=0}^{\infty}q^k) [/mm] = [mm] \summe_{k=0}^{infty} c_{n} [/mm] wobei
[mm] c_{n} [/mm] = [mm] \summe_{k=0}^{\infty}a_{k}b{n-k} [/mm] = [mm] \summe_{k=0}^{\infty}q^k*q^{n-k} [/mm] = [mm] \summe_{k=0}^{\infty}q^n [/mm] = [mm] \frac{1}{1-q} [/mm] (ist die harmonische Reihe).
Daraus zu folgern, dass [mm] \summe_{k=1}^{\infty}kq^{k-} [/mm] = [mm] 1+2q+3q^2+...= \frac{1}{(1-q)^2} [/mm] ist, wahrscheinlich, durch vollständige Induktion zu beweisen...aber wie?...meine erste Summe geht von k = 0 und die 2-te von k = 1.
Die Verallgemeinerung von [mm] \frac{1}{(1-q)^m} [/mm] schrieb ich als: [mm] \summe_{k=1}^{\infty}\frac{1}{(1-q)^m} [/mm] = 1 + mq + [mm] (m+1)q^m [/mm] + [mm] (m+2)q^{m+1} [/mm] + [mm] (m+3)q^{m+2} [/mm] + ....ist das, was ich schreiben sollte?
Danke
roxy
|
|
|
|
Hallo roxy,
> Hallo!
> hab folgende Aufgabe:
> Berechne das Cauchy-Produkt von [mm]\summe_{k=0}^{\infty}q^k[/mm]
> mit sich selbst für [mm]q\in\IC[/mm] mit |q| < 1 und folgere:
> [mm]\summe_{k=1}^{\infty}kq^{k-}[/mm] = [mm]1+2q+3q^2+...= \frac{1}{(1-q)^2}.[/mm]
> Verallgemeinere die Reihe zu eine Reihendarstellung von
> [mm]\frac{1}{(1-q)^m}[/mm] für [mm]m\in\IN[/mm] und |q| < 1.
>
> ich habe den Cauchy-Produkt mit sich selbst geschrieben,
> u.z.:
>
> [mm](\summe_{k=0}^{\infty}q^k)*(\summe_{k=0}^{\infty}q^k)[/mm] =
> [mm]\summe_{k=0}^{infty} c_{n}[/mm] wobei
> [mm]c_{n}[/mm] = [mm]\summe_{k=0}^{\infty}a_{k}b{n-k}[/mm] =
> [mm]\summe_{k=0}^{\infty}q^k*q^{n-k}[/mm] = [mm]\summe_{k=0}^{\infty}q^n[/mm]
> = [mm]\frac{1}{1-q}[/mm] (ist die harmonische Reihe).
das stimmt nicht ganz:
[mm]
\sum\limits_{k = 0}^\infty {q^k } \;\sum\limits_{k = 0}^\infty {q^k } \; = \;\sum\limits_{k = 0}^\infty {\sum\limits_{l = 0}^k {q^l \;q^{k - l} } } \; = \sum\limits_{k = 0}^\infty {\sum\limits_{l = 0}^k {q^k } } \; = \;\sum\limits_{k = 0}^\infty {(k + 1)\;} q^k [/mm]
> Daraus zu folgern, dass [mm]\summe_{k=1}^{\infty}kq^{k-}[/mm] =
> [mm]1+2q+3q^2+...= \frac{1}{(1-q)^2}[/mm] ist, wahrscheinlich, durch
> vollständige Induktion zu beweisen...aber wie?...meine
> erste Summe geht von k = 0 und die 2-te von k = 1.
Da ist nichts mit Induktion zu machen.
> Die Verallgemeinerung von [mm]\frac{1}{(1-q)^m}[/mm] schrieb ich
> als: [mm]\summe_{k=1}^{\infty}\frac{1}{(1-q)^m}[/mm] = 1 + mq +
> [mm](m+1)q^m[/mm] + [mm](m+2)q^{m+1}[/mm] + [mm](m+3)q^{m+2}[/mm] + ....ist das, was
> ich schreiben sollte?
Nein.
Gruß
MathePower
|
|
|
|
|
Status: |
(Frage) für Interessierte | Datum: | 00:44 Mo 05.12.2005 | Autor: | roxy |
Hallo MathePower!
und Danke für deine Hilfe!
> das stimmt nicht ganz:
>
> [mm]
\sum\limits_{k = 0}^\infty {q^k } \;\sum\limits_{k = 0}^\infty {q^k } \; = \;\sum\limits_{k = 0}^\infty {\sum\limits_{l = 0}^k {q^l \;q^{k - l} } } \; = \sum\limits_{k = 0}^\infty {\sum\limits_{l = 0}^k {q^k } } \; = \;\sum\limits_{k = 0}^\infty {(k + 1)\;} q^k[/mm]
und weiter [mm] \summe_{k = 0}^\infty (k+1)*q^k [/mm] = [mm] \frac {1}{(1-q)^{2}} [/mm] wie komme ich aber auf [mm] \summe_{k=1}^{\infty}kq^{k-1}?
[/mm]
habe jetzt die Verallgemeinerung:
wegen der absoluten Konvergenz, kann der Multiplikationssatz angewendet werden:
[mm] \frac{1}{(1-q)^m} [/mm] = [mm] \summe_{n=0}^{\infty}\frac{(n+1)(n+2)....(n+m-1)}{(k-1)!}*q^{n}
[/mm]
leider habe ich weder den Multiplikationssatz verstanden, noch wie man auf die Summe gekommen ist...
Danke & Gruß
roxy
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:24 Mi 07.12.2005 | Autor: | matux |
Hallo roxy!
Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.
Vielleicht hast Du ja beim nächsten Mal mehr Glück .
Viele Grüße,
Matux, der Foren-Agent
Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.
|
|
|
|