matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisCauchy-Hadamard
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Cauchy-Hadamard
Cauchy-Hadamard < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Hadamard: Herleitung des Satzes
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:57 Do 07.07.2005
Autor: Diirki

Vorab die Formalitäten:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
;)

Und nun zur Frage:
Weiss einer, wie ich gekonnt den Satz von Cauchy-Hadamard herleiten könnte, der da besagt:

Der Konvergenzradius einer Potenzreihe P(x) ist R = 1/L mit
L= [mm] \limes_{n\rightarrow\infty} \wurzel[n]{ |a_{n} |} [/mm]
für P(x)= [mm] \summe_{n=0}^{\infty} a_{n} x^{n}. [/mm]

???
MfG und Danke schon im Voraus für die Hilfe
Dirk

        
Bezug
Cauchy-Hadamard: ggf.: schlaues Buch
Status: (Antwort) fertig Status 
Datum: 11:06 Do 07.07.2005
Autor: angela.h.b.

>
> Und nun zur Frage:
>  Weiss einer, wie ich gekonnt den Satz von Cauchy-Hadamard
> herleiten könnte, der da besagt:

Hallo,
ich bin mir sicher, daß das in diversen Büchern nachzulesen ist, ob "gekonnt", weiß ich allerdings nicht...

Ich hab' mal in meinem Skript nachgeschaut:
Es werden 3 Fälle untersucht.

1. [mm] \wurzel[n]{ |a_{n} |} [/mm] ist unbeschränkt
2. [mm] \wurzel[n]{ |a_{n} |} [/mm] konvergiert gegen Null
3. [mm] \wurzel[n]{ |a_{n} |} [/mm] ist beschränkt und keine Nullfolge.

zu1. Es wird gezeigt, daß unter dieser Voraussetzung [mm] a_n(x-a)^n [/mm] keine Nullfoge ist und die Potenzreihe folglich divergent.

zu2.  Es folgt daß [mm] \wurzel[n]{ |a_{n} | |x-a|^n} [/mm] Nullfolge ist, hieraus die absolute Konvergenz der Potenzreihe.

zu3. Hier wird der lim sup  [mm] \wurzel[n]{ |a_{n} |} [/mm] :=s betrachtet.
und gezeigt: Konvergenz der Potenzreihe für |x-a|< [mm] \bruch{1}{s}, [/mm] Divergenz für |x-a|> [mm] \bruch{1}{s} [/mm]

Dies als kleine Hinweise. Schaffst Du es so schon? Ansonsten, wie gesagt: schlaues Buch. Ich denke, es ist müßig, diese Dinge, die bestimmt vielfach gedruckt vorliegen, abzutippen, oder?

Oder hängst Du an einer bestimmten Stelle fest, verstehst einen bestimmten Schritt in einem Dir vorliegenden Beweis nicht?

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]