matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenCantorfolge(?)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Cantorfolge(?)
Cantorfolge(?) < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cantorfolge(?): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Fr 25.01.2008
Autor: hundert

Aufgabe
Betrachten Sie die Menge C= [mm] \{x=\summe_{n=1}^{\infty}\bruch{a_n}{3^n}|a_n=0 oder 2\} [/mm]

(a) Skizzieren sie C
(b) Zeigen sie, dass die menge der häufungspunkte von C genau die Menge  C selbst ist.

Okay also zu a,  seh ich das richtig das als werte  für a=0 immer 0 rauskommt, also  zeichene ich ein kartesisches koordiantensytsem und zeihen alle punkite auf der x- achse ab 1 ein.   für  [mm] a_n [/mm] = 2 setz ich ein   [mm] \bruch{2}{3^n} [/mm] und trage die werte ebenfals ein .

zu b
) meneg er häufunspunkte ist   bei [mm] a_n [/mm] = 0  0 oder? und bei [mm] a_n= [/mm] 2 ist 2 häufungspunkt,.. wie zeig ich das jetzt genau?


lg  

        
Bezug
Cantorfolge(?): Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Fr 25.01.2008
Autor: Somebody


> Betrachten Sie die Menge C=
> [mm]\{x=\summe_{n=1}^{\infty}\bruch{a_n}{3^n}|a_n=0 oder 2\}[/mm]
>  
> (a) Skizzieren sie C
>  (b) Zeigen sie, dass die menge der häufungspunkte von C
> genau die Menge  C selbst ist.
>  Okay also zu a,  seh ich das richtig das als werte  für
> a=0 immer 0 rauskommt, also  zeichene ich ein kartesisches
> koordiantensytsem und zeihen alle punkite auf der x- achse
> ab 1 ein.   für  [mm]a_n[/mm] = 2 setz ich ein   [mm]\bruch{2}{3^n}[/mm] und
> trage die werte ebenfals ein .
>  
> zu b
>  ) meneg er häufunspunkte ist   bei [mm]a_n[/mm] = 0  0 oder? und
> bei [mm]a_n=[/mm] 2 ist 2 häufungspunkt,.. wie zeig ich das jetzt
> genau?

1. Um zu beweisen, dass die Menge aller Häufungspunkte von $C$ jedenfalls in $C$ enthalten ist, nimmst Du an, es sei Dir ein konkretes Element [mm] $x=\summe_{n=1}^{\infty}\bruch{a_n}{3^n}$ [/mm] dieser Menge $C$ gegeben. Du musst nun zeigen können, dass es zu jedem noch so kleinen [mm] $\varepsilon>0$ [/mm] ein Element von [mm] $C\backslash\{x\}$ [/mm] gibt, das von $x$ einen Abstand kleiner als [mm] $\varepsilon$ [/mm] hat.
Dazu verwendest Du ein Element von $C$, das für ein genügend grosses Anfangsstück der Reihe [mm] $\sum_{n=1}^\infty\frac{a_n}{3^n}$ [/mm] mit der Reihe von $x$ übereinstimmt, im Rest dieser Summe dann aber passend abweicht und daher von $x$ verschieden ist.

2. Um zu beweisen, dass alle Elemente von $C$ Häufungspunkte von $C$ sind, musst Du zeigen, dass es in jeder noch so kleinen [mm] $\varepsilon$-Umgebung [/mm] eines konkreten Elementes [mm] $x=\summe_{n=1}^{\infty}\bruch{a_n}{3^n}$ [/mm] von $C$ ein weiteres, von $x$ verschiedenes Element von $C$ gibt.

3. Um zu beweisen, dass es keine weiteren Häufungspunkte (ausserhalb von $C$) gibt, musst Du für eine beliebige Zahl [mm] $y\in \IR\backslash [/mm] C$ zeigen, dass es eine gewisse [mm] $\varepsilon$-Umgebung [/mm] von $y$ gibt, in der keine weiteren Elemente von $C$ liegen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]