matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreCantor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Cantor
Cantor < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cantor: N und NxN sind gleichmächtig
Status: (Frage) beantwortet Status 
Datum: 17:53 Fr 12.10.2007
Autor: elefanti

Hallo ihr,

zwei unendliche Mengen sind ja gleichmächtig, wenn zwischen ihnen eine bijektive Abbildung existiert.

Ich habe nun einen Beweis mit Cantors Diagonalverfahren vor mir liegen, den ich nicht verstehe. Er soll zeigen, dass [mm] \IN [/mm] und [mm] \IN [/mm] x [mm] \IN [/mm] gleichmächtig sind.

Der Beweis besteht nur aus einer Zeichnung:
(1,1)->(2,1) (3,1)...
(1,2) (2,2) (3,2)...
(1,3)(2,3)(3,3)...
....

wobei die Elemente diagonal durchlaufen werden, also:
(1,1)->(2,1)->(1,2)->(1,3)->(2,2)->(3,1)...


Die Tupel sollen wollen die Elemente von [mm] \IN [/mm] x [mm] \IN [/mm] darstellen, aber woran erkenne ich nun dass beide Mengen gleichmächtig sind?


Viele Grüße
Elefanti


        
Bezug
Cantor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Fr 12.10.2007
Autor: Blech


> Hallo ihr,
>  
> zwei unendliche Mengen sind ja gleichmächtig, wenn zwischen
> ihnen eine bijektive Abbildung existiert.
>  
> Ich habe nun einen Beweis mit Cantors Diagonalverfahren vor
> mir liegen, den ich nicht verstehe. Er soll zeigen, dass
> [mm]\IN[/mm] und [mm]\IN[/mm] x [mm]\IN[/mm] gleichmächtig sind.
>  
> Der Beweis besteht nur aus einer Zeichnung:
>  (1,1)->(2,1) (3,1)...
>  (1,2) (2,2) (3,2)...
>  (1,3)(2,3)(3,3)...
>  ....
>  
> wobei die Elemente diagonal durchlaufen werden, also:
>  (1,1)->(2,1)->(1,2)->(1,3)->(2,2)->(3,1)...

Das ist nun die Abbildung.
[mm] $F:\IN\to\IN\times\IN$ [/mm]
F(1):=(1,1); F(2):=(2,1); F(3):=(1,2); F(4):=(1,3)...

>
> Die Tupel sollen wollen die Elemente von [mm]\IN[/mm] x [mm]\IN[/mm]
> darstellen, aber woran erkenne ich nun dass beide Mengen
> gleichmächtig sind?

Daran, daß Du mit dieser Abbildung früher oder später jedes Element [mm] $(i,j)\in\IN\times\IN$ [/mm] erreichen wirst. Ein beliebiges $(i,j)$ liegt auf der (i+j-1)-ten Diagonalen (1. es liegt auf einer Diagonalen) und es sind maximal [mm] $\sum_{k=1}^{i+j-1}k$ [/mm] Schritte erforderlich (2. es ist in endlich vielen Schritten erreichbar) bis Du dort bist.

Bezug
                
Bezug
Cantor: Danke :)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Fr 12.10.2007
Autor: elefanti

Hallo Blech,

vielen Dank für deine Hilfe!


Liebe Grüße
Elefanti

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]