matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeC und R Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - C und R Körper
C und R Körper < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

C und R Körper: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:03 So 26.04.2009
Autor: chrissi2709

Aufgabe
1. Ergänze Vektoren b1 = (1,0,1) und b2 = (1,-1,0) zu einer Basis des [mm] \IC [/mm] -Vektorraums [mm] \IC^3 [/mm] und zu einer Basis des [mm] \IR [/mm] - Vektorraums [mm] \IC^3 [/mm]
2. Die Abb h: [mm] \IC^n [/mm] -> [mm] \IR^n [/mm] sei lin. Abb. der [mm] \IR [/mm] - Vektorräume [mm] \IC^n [/mm] und [mm] \IR^m. [/mm] Zeige, dass f: [mm] \IC^n [/mm] -> [mm] \IC^m, [/mm] f(x) = h(x) - ih(ix) eine lin. Abb. der [mm] \IC [/mm] - Vektorräume [mm] \IC^n [/mm] und [mm] \IC^m [/mm] ist.
3. f: [mm] \IC^n [/mm] -> [mm] \IC^m [/mm] eine lin. Abb. der [mm] \IC [/mm] - Vektorräume [mm] \IC^n [/mm] und [mm] \IC^m. [/mm] Zeige, dass es eine lin. Abb. h: [mm] \IC^n [/mm] -> [mm] \IR^m [/mm] der [mm] \IR [/mm] - Vektorräume gibt, so dass f(x) = h(x) - ih(ix) für alle x [mm] \in \IC^n [/mm]

hallo!

Wo liegt denn ganz allgemein der Unterschied zw der Basis in [mm] \IC [/mm] und der in [mm] \IR? [/mm]
zu 1.
ich weiß, dass [mm] \IC [/mm] = [mm] \IR^2 [/mm] ist, heißt das, dass ich zur [mm] \IC [/mm] Basis noch einen Vektor brauche und zur [mm] \IR [/mm] Basis noch vier? und v.a. wie mache ich so was?

zu 2. und 3.
2. und 3. sind sich ja recht ähnlich. wie gehe ich denn da vor?

        
Bezug
C und R Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 So 26.04.2009
Autor: angela.h.b.


> 1. Ergänze Vektoren b1 = (1,0,1) und b2 = (1,-1,0) zu einer
> Basis des [mm]\IC[/mm] -Vektorraums [mm]\IC^3[/mm] und zu einer Basis des [mm]\IR[/mm]
> - Vektorraums [mm]\IC^3[/mm]
>  2. Die Abb h: [mm]\IC^n[/mm] -> [mm]\IR^n[/mm] sei lin. Abb. der [mm]\IR[/mm] -

> Vektorräume [mm]\IC^n[/mm] und [mm]\IR^m.[/mm] Zeige, dass f: [mm]\IC^n[/mm] -> [mm]\IC^m,[/mm]
> f(x) = h(x) - ih(ix) eine lin. Abb. der [mm]\IC[/mm] - Vektorräume
> [mm]\IC^n[/mm] und [mm]\IC^m[/mm] ist.
>  3. f: [mm]\IC^n[/mm] -> [mm]\IC^m[/mm] eine lin. Abb. der [mm]\IC[/mm] - Vektorräume

> [mm]\IC^n[/mm] und [mm]\IC^m.[/mm] Zeige, dass es eine lin. Abb. h: [mm]\IC^n[/mm] ->
> [mm]\IR^m[/mm] der [mm]\IR[/mm] - Vektorräume gibt, so dass f(x) = h(x) -
> ih(ix) für alle x [mm]\in \IC^n[/mm]
>  hallo!
>  
> Wo liegt denn ganz allgemein der Unterschied zw der Basis
> in [mm]\IC[/mm] und der in [mm]\IR?[/mm]


Hallo,

wenn Du [mm] \IC^3 [/mm] als VR über [mm] \IR [/mm] auffaßt, dann dürfen die Linearkombinationen nur Koeffizienten aus [mm] \IR [/mm] haben, faßt Du ihn als VR über [mm] \IC [/mm] auf, dann dürfen die Skalare dem kompletten [mm] \IC [/mm] entstammen.

Das hat Folgen für die Dimension der beiden Räume.
Welche Dimension hat [mm] \IC^3 [/mm] über [mm] \IC, [/mm] welche über [mm] \IR? [/mm]

>  zu 1.
>  ich weiß, dass [mm]\IC[/mm] = [mm]\IR^2[/mm] ist,

Das stimmt ja nicht so ganz.
Richtig ist, daß die beiden isomorph sind, und man sie daher als gleich auffassen kann.


> heißt das, dass ich zur
> [mm]\IC[/mm] Basis noch einen Vektor brauche

Richtig.


> und zur [mm]\IR[/mm] Basis noch
> vier?

Ja.

>  und v.a. wie mache ich so was?

Ergänze erstmal die beiden Vektoren zu einer Basis des [mm] \IR^3 [/mm] über [mm] \IR. [/mm]

Überlege danach, ob das bereits eine Basis des [mm] \IC^3 [/mm] über [mm] \IC [/mm] bzw. über [mm] \IR [/mm] ist.

Falls es keine Basis ist, überlege, was Dir noch fehlt.


>  
> zu 2. und 3.
>  2. und 3. sind sich ja recht ähnlich.

Findest Du?

ich finde die recht unterschiedlich:

in 2. ist eine Abbildung f gegeben, von der man zeigen soll, daß sie eine bestimmte Eigenschaft hat.

Hier mußt Du die Linearität von f vorrechnen, ich denke, das ist nicht sschwer.


In 3. hingegen ist die Existenz einer linearen Abbildung h mit einer bestimmten Eigenschaft zu zeigen.

Hier mußt Du  eine passende Abbildung h definieren und zeigen, daß sie das Verlangte tut.

Gruß v. Angela



Bezug
        
Bezug
C und R Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Mo 27.04.2009
Autor: muesmues

Aufgabe
In 3. hingegen ist die Existenz einer linearen Abbildung h mit einer bestimmten Eigenschaft zu zeigen.

Hier mußt Du  eine passende Abbildung h definieren und zeigen, daß sie das Verlangte tut.  

alos ich suche gaanz einfach irgendeine abbildung die das gesuchte tut. und wie mache ich so was`?

Bezug
                
Bezug
C und R Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Mo 27.04.2009
Autor: angela.h.b.


> > In 3. hingegen ist die Existenz einer linearen Abbildung h
> > mit einer bestimmten Eigenschaft zu zeigen.
>  
> > Hier mußt Du  eine passende Abbildung h definieren und
> > zeigen, daß sie das Verlangte tut.
> alos ich suche gaanz einfach irgendeine abbildung die das
> gesuchte tut. und wie mache ich so was'?

Hallo,

suchen kann man ja so und so gestalten. Wenn ich Steinpilze suche, schaue ich gewöhnlich an anderen Stellen nach, als wenn ich auf der alltäglichen Suche nach meiner Brille bin.

Die Abbildung, die gesucht wird, hat ja etwas mit der vorgegebenen Abbildung f zu tun. Die Abbildung f ist Dir also in die Hand gedrückt.

Wenn ich in solchen Situationen nicht mehr weiterweiß, mache ich mir immer erstmal ein konkretes Beispiel.

Nimm Dir irgendeine ganz konkrete lineare Funktion [mm] f:\IC^3 \to C^2, [/mm] und versuche dann eine passende Funktion h zu finden.
Danach fällt der allgemeine Fall meist leichter. Ich jedenfalls funktioniere so.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]