matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungBüschelgerade
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Büschelgerade
Büschelgerade < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Büschelgerade: Aufgabe Büschelgerade
Status: (Frage) beantwortet Status 
Datum: 20:06 Mo 11.06.2007
Autor: neo163

Aufgabe
1.0 Die Gerade g ist durch die Punkte P(1/4) und Q (4/1) festgelegt.
1.1. Bestimmen Sie die Funktionsgleichung der Geraden g. <mögl. Lösung x+y=5>
1.2. Weiterhin ist das Geradenbüschel gm mit der Funktionsgleichung y=mx-m+4 gegeben.
1.2.1 Für welchen m-Wert stimmt die Büschelgerade gm mit g überein?
1.2.2 Zeigen Sie rechnerisch, dass der Punkt P(1/4) Büschelpunkt ist, dh all Geraden schneiden sich in P.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Wie löst man die Aufgaben mit dem Geradenbüschel? Also ab 1.2.
Also bei der 1.1 habe ich folgendes herausbekommen:y=x+5




        
Bezug
Büschelgerade: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Mo 11.06.2007
Autor: noerpel

1.2.1 da wuerd ich zunaechst mal die zwei geraden
untereinander schreiben:

y=    x      + 5
y= mx  - m +4

und nun sollte man durch scharfes anschauen sehen, wie man m
waehlen muss, dass beide geraden gleich sind.
(oder auch rechnen: "vor dem x steht oben ne 1 unten ein m,
das kann also nur dasselbe sein, wenn m=1, und nun schaut man noch
ob die 5 dasselbe ist wie -m+4 wenn ich m=1 gewaehlt hab, -1+4=3
das kann nicht hinkommen, d.h. es gibt kein m derart, dass die
zwei geraden ueberein stimmen.



1.2.2. bueschelpunkt-nachweis geht ueber eine normale punktprobe.
punktprobe hat ja die eigenschaft, auf eine wahre aussage zu fuehren,
wenn der punkt ein punkt der gerade ist.
da der punkt nun auf allen geraden liegen soll muss eine wahre
aussage rauskommen, die UNABHAENGIG von der wahl von m ist.

y=mx-m+4  P(1/4) eingesetzt, also:
4=m*1-m+4
4=4 ist wahre aussage fuer jede beliebige wahl von m, also ist
der punkt auf jeder dieser gerade und somit bueschelpunkt
wie zu zeigen war

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]