matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Brüche zusammenfassen Hauptnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Brüche zusammenfassen Hauptnen
Brüche zusammenfassen Hauptnen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brüche zusammenfassen Hauptnen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:52 Do 25.09.2008
Autor: vlue

Aufgabe
[mm] \bruch{3x}{4x²-1} [/mm] + [mm] \bruch{x-1}{2x+1} [/mm]

Mein Rechenweg ist [mm] \bruch{3x*(2x+1)}{(4x²-1)*(2x+1)} [/mm] + [mm] \bruch{(x-1)*(4x²-1)}{(2x+1)*(4x²-1)} [/mm]
= [mm] \bruch{3x*(2x+1)+(x-1)*(4x²-1)}{(4x²-1)*(2x+1)} [/mm]
=3x+x-1
=4x-1
Ist dieser Rechenweg richtig hab ich richtig gekürzt oder hab ich zu umstaändlich berechnet??
Danke für die Hilfe im Voraus

,vlue
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Brüche zusammenfassen Hauptnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Do 25.09.2008
Autor: M.Rex

Hallo

$ [mm] \bruch{3x\cdot{}(2x+1)}{(4x²-1)\cdot{}(2x+1)} [/mm] $ + $ [mm] \bruch{(x-1)\cdot{}(4x²-1)}{(2x+1)\cdot{}(4x²-1)} [/mm] $

ist korrekt

Aber jetzt:
$ [mm] \bruch{3x\cdot{}(2x+1)}{(4x²-1)\cdot{}(2x+1)} [/mm] $ + $ [mm] \bruch{(x-1)\cdot{}(4x²-1)}{(2x+1)\cdot{}(4x²-1)} [/mm] $
[mm] =\bruch{3x\cdot{}(2x+1)+(x-1)\cdot{}(4x²-1)}{(2x+1)\cdot{}(4x²-1)} [/mm]
[mm] =\bruch{6x+3x+(4x³-x-4x²+1)}{(2x+1)\cdot{}(4x²-1)} [/mm]
=...

Alternativ und einfacher (Wenn du siehst, dass (4x²-1)=(2x+1)(2x-1)

Dann wird:

[mm] \bruch{3x}{4x²-1}+\bruch{x-1}{2x+1} [/mm]
[mm] =\bruch{3x}{(2x+1)(2x-1)}+\bruch{x-1}{2x+1} [/mm]
[mm] =\bruch{3x}{(2x+1)(2x-1)}+\bruch{(2x-1)(x-1)}{(2x-1)(2x+1)} [/mm]
[mm] =\bruch{3x+(2x-1)(x-1)}{(2x+1)(2x-1)} [/mm]
=...

Beide Wege müssten zum selben Ergebnis kommen.

Marius

Bezug
                
Bezug
Brüche zusammenfassen Hauptnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Do 25.09.2008
Autor: vlue

beim kürzen bekomme ich irgendwie ein fehler rein beim ersten erhalte ich [mm] \bruch{x}{2x-1} [/mm]
beim zweiten [mm] \bruch{x}{1} [/mm]
gibt es bestimmte kürzungs regeln wie * vor strich und wie sieht es mit aus wenn man im nenner eine negative zahl hat aber im zähler eine positive darf man diese miteinander kürzen??

Bezug
                        
Bezug
Brüche zusammenfassen Hauptnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Do 25.09.2008
Autor: M.Rex

Hallo

Du darfst nur aus Produkten kürzen.

Schreib doch deine Rechnungen mal auf, dann sehen wir eventuelle Fehler.

Marius

Bezug
                                
Bezug
Brüche zusammenfassen Hauptnen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:48 Do 25.09.2008
Autor: vlue

Aufgabe
[mm] \bruch{6x+3x+(4x³-x-4x²+1)}{(2x+1)(4x²-1)} [/mm]
= [mm] \frac{9x+4x³-x-4x²+1}{(2x+1)(4x²-1)} [/mm]
[mm] =\frac{8x+4x³-4x²+1}{(2x+1)(4x²-1)} [/mm]
[mm] \frac{8x+4x³}{2x+1} [/mm]
[mm] \frac{4x+2x²}{1} [/mm]

als ich meine rechnung eintippen wollte hab ich bemerkt das ich wohl vollkommen falsch gekürzt hab so hab ich nun erneut versucht und dies kam dann heraus

,vlue

Bezug
                                        
Bezug
Brüche zusammenfassen Hauptnen: So nicht kürzen!
Status: (Antwort) fertig Status 
Datum: 17:58 Do 25.09.2008
Autor: Disap


> [mm]\bruch{6x+3x+(4x³-x-4x²+1)}{(2x+1)(4x²-1)}[/mm]

Wenn der obige Term stimmt, was ich nicht weiß...

>  = [mm]\frac{9x+4x³-x-4x²+1}{(2x+1)(4x²-1)}[/mm]
>  [mm]=\frac{8x+4x³-4x²+1}{(2x+1)(4x²-1)}[/mm]

Nein, du darfst so nicht kürzen...Wie jemand hier schon gesagt hast, du darfst nur aus Produkten (also irgendetwas mit Mal) kürzen und nicht aus Summen (mit + oder - )
Du musst das untere ausmultiplizieren und gucken, ob du da noch etwas wegkürzen kannst, wobei ich das nicht vermute. Aber überprüf es lieber mal.


>  [mm]\frac{8x+4x³}{2x+1}[/mm]
>  [mm]\frac{4x+2x²}{1}[/mm]

Ne, so darfst du nicht kürzen...

>  als ich meine rechnung eintippen wollte hab ich bemerkt
> das ich wohl vollkommen falsch gekürzt hab so hab ich nun
> erneut versucht und dies kam dann heraus
>  
> ,vlue


Bezug
                                                
Bezug
Brüche zusammenfassen Hauptnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Do 25.09.2008
Autor: vlue

Aufgabe
$ [mm] \bruch{3x}{4x²-1} [/mm] $ + $ [mm] \bruch{x-1}{2x+1} [/mm] $

ich verzweifle langsam bei dieser aufgabe kann mir einer evtl eine komplette lösung mal vorrechnen wär wirklich super bis $ [mm] \bruch{3x\cdot{}(2x+1)}{(4x²-1)\cdot{}(2x+1)} [/mm] $ + $ [mm] \bruch{(x-1)\cdot{}(4x²-1)}{(2x+1)\cdot{}(4x²-1)} [/mm] $ bin ich wohl nur gekommen

Bezug
                                                        
Bezug
Brüche zusammenfassen Hauptnen: zuviel
Status: (Antwort) fertig Status 
Datum: 18:32 Do 25.09.2008
Autor: Loddar

Hallo vlue!


Wie dir bereits oben geschrieben wurde, gehst Du hier zu ungeschickt vor, da Du nicht mit dem kgV der beiden Nenner vorgehst.

[mm] $$\bruch{3x}{4x^2-1} [/mm] + [mm] \bruch{x-1}{2x+1}$$ [/mm]
$$= \ [mm] \bruch{3x}{(2x+1)*(2x-1)} [/mm] + [mm] \bruch{x-1}{2x+1}$$ [/mm]
$$= \ [mm] \bruch{3x}{(2x+1)*(2x-1)} [/mm] + [mm] \bruch{(x-1)*\blue{(2x-1)}}{(2x+1)*\blue{(2x-1)}}$$ [/mm]
$$= \ [mm] \bruch{3x+(x-1)*(2x-1)}{(2x+1)*(2x-1)}$$ [/mm]
$$= \ [mm] \bruch{3x+2x^2-x-2x+1}{(2x+1)*(2x-1)}$$ [/mm]
$$= \ [mm] \bruch{2x^2+1}{(2x+1)*(2x-1)}$$ [/mm]
$$= \ [mm] \bruch{2x^2+1}{4x^2-1}$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]