matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteBruchterme umwandeln/kürzen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Bruchterme umwandeln/kürzen
Bruchterme umwandeln/kürzen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchterme umwandeln/kürzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Mi 08.02.2006
Autor: hatschepsut

Aufgabe 1
  [mm] \bruch{3n²-n}{4n²} [/mm]

Aufgabe 2
  [mm] \bruch{n+1}{n} [/mm]

Hallo zusammen,

ich bin neu hier, deshalb verzeiht mir bitte etwaige Verstöße oder Fehler :-) und weist mich gerne darauf hin. :-).

Mein Problem ist, dass ich nicht genau weiss, wie ich Bruchterme kürzen kann bzw. was genau ich also tun muss, um zu kürzen.

Bei obiger Aufgabe hab ich einfach mal auf gut Glück durch n² gekürzt. Das ergibt dann bei mir:

[mm] \bruch{3n²}{n²} [/mm] = [mm] 3-\bruch{1}{n}durch [/mm] 4.

Als Lösung steht im Buch  [mm] \bruch{3}{4}- \bruch{1}{4n} [/mm]

Ist dass das gleiche?

Bei der zweiten Aufgabe kommt als Lösung einer Umwandlung raus: [mm] 1+\bruch{1}{n}. [/mm] Und hier kann ich nicht mal einen Lösungsweg sagen, da ich gar nicht weiss, was hier gemacht wurde? Durch n kann ja nicht gekürzt worden sein... ?!? Ich bin wirklich ratlos.

Mir geht es generell drum zu wissen, was ich tun muss. Jedesmal durch den höchsten Wert viell. kürzen? Ein bisschen Orientierungshilfe wäre super!

Ich danke Euch sehr für evtl. Antworten.

Grüßle,
hatschepsut

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.






        
Bezug
Bruchterme umwandeln/kürzen: Lösung
Status: (Antwort) fertig Status 
Datum: 13:06 Mi 08.02.2006
Autor: c.t.

Das Prinzip ist immer das gleiche:

1. Den Bruch auseinander ziehen
2. Kürzen

Zu Verdeutlichung nun zu deinen Aufgaben:

1. [mm] \bruch{3n^2-n}{4n^2}= \bruch{3n^2}{4n^2}-\bruch{n}{4n^2} [/mm]

Jetzt kommt das kürzen: bei den Term [mm] \bruch{3n^2}{4n^2} [/mm] kann man [mm] n^2 [/mm] kürzen; der Bruch wird zu [mm] \bruch{3}{4} [/mm]

Bei den Term [mm] -\bruch{n}{4n^2} [/mm] kürzt man jedoch nur n, da kein [mm] n^2 [/mm] im Zähler steht; man erhält also [mm] -\bruch{1}{4n} [/mm]

zusammengefasst erhält man dann das gewünschte Ergebnis


2.  [mm] \bruch{n+1}{n}= \bruch{n}{n}+ \bruch{1}{n} [/mm]

Beim ersten Term kann durch n gekürzt werden, man erhält 1. Beim zweiten Term kann nicht gekürzt werden, er bleibt so stehen

Zusammen hat man dann 1+ [mm] \bruch{1}{n} [/mm]


Wie gesagt, das Schema ist immer das gleiche, mit etwas Übung sieht man Brüchen immer sofort an, wie man sie kprzen kann.



Bezug
                
Bezug
Bruchterme umwandeln/kürzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Mi 08.02.2006
Autor: hatschepsut

Ahh! Danke Dir, Du hast mir sehr geholfen- auch durch Dein übersichtliches aufschlüsseln.  Auseinanderziehen war ein gutes Stichwort. Ich werde es jetzt mal so versuchen.

Danke.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]