matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 5-7Bruchgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 5-7" - Bruchgleichung
Bruchgleichung < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchgleichung: Hauptnenner
Status: (Frage) beantwortet Status 
Datum: 19:06 Do 10.12.2009
Autor: sirod

Hallo,

könnte mir irgendjemand bei der Lösung von folgender Bruchgleichung helfen?

[(r+s):6*(r-s)²]-[(r-s):(6*(r+s)²]-[4s³:(3*(r²-s²)]=

Ich habe als gemeinsamen Hauptnenner 6*(r+s)*(r-s)*(r+s)*(r-s) gewählt. Stimmt das? Irgendwie hänge ich dann aber fest beim ausmultiplizieren denn dann steht oben irgendwann (r+s)³-(r+s)³ und das ist ja Null?

Bitte um Hilfe
Danke :-)

        
Bezug
Bruchgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Do 10.12.2009
Autor: Adamantin

Das kann ja kein Mensch lesen! Um Gottes willen, bitte benutze den Formeleditor. Mein Versuch, das zu lesen, ergibt:


>  
> [(r+s):6*(r-s)²]-[(r-s):(6*(r+s)²]-[4s³:(3*(r²-s²)]=
>  

$ [mm] \bruch{r+s}{6*(r-s)^2} [/mm] - [mm] \bruch{r-s}{6*(r+s)^2} [/mm] - [mm] \bruch{4s^3}{4*(r^2-s^2)} [/mm] $ stimmt das?

Dann schauen wir uns den letzten Nenner an und erkennen:

$ [mm] 4*(r^2-s^2)=4*(r+s)(r-s) [/mm] $ richtig? Dann kürzen wir das mal geschwind:

$ [mm] \bruch{r+s}{6*(r-s)^2} [/mm] - [mm] \bruch{r-s}{6*(r+s)^2} [/mm] - [mm] \bruch{s^3}{(r-s)*(r+s)} [/mm] $

Jetzt würde ich auch 6 [mm] (r-s)^2*(r+s)^2 [/mm] als gemeinsamen Nenner vorschlagen:

$ [mm] \bruch{(r+s)*(r+s)^2}{6*(r-s)^2*(r+s)^2} [/mm] - [mm] \bruch{(r-s)*(r-s)^2}{6*(r+s)^2*(r-s)^2} [/mm] - [mm] \bruch{(s^3)*6*(r-s)*(r+s)}{(r+s)(r-s)*6*(r-s)*(r+s)} [/mm] $

Und das gibt wunderschön:

$ [mm] \bruch{(r+s)*(r+s)^2-(r-s)*(r-s)^2-(s^3)*6*(r-s)*(r+s)}{6*(r-s)^2*(r+s)^2} [/mm] $

Zusammenfassen:

$ [mm] \bruch{(r+s)^3-(r-s)^3-6*s^3*(r^2-s^2)}{6*(r-s)^2*(r+s)^2} [/mm] $

Und hier kürzt sich nicht all zu viel weg, denn [mm] (r+s)^3-(r-s)^3 [/mm] ist mitnichten 0, denn dazu müsste in beiden Klammern dasselbe stehen, und [mm] (1+2)^3 [/mm] ist ja was anderes als [mm] (1-2)^3 [/mm] ;) Weiß nicht, wie weit ihr das vereinfachen sollt oder ob das jetzt noch viel weiter geht, man kann natürlich dritte binomische Formel anwenden und dann würde sich einiges wegkürzen aber....nagut...

$ [mm] \bruch{r^3+3r^2s+3rs^2+s^3-r^3-3r^2s+3rs^2-s^3-6*s^3*(r^2-s^2)}{6*(r-s)^2*(r+s)^2} [/mm] $

kürzen ergibt:

$ [mm] \bruch{6rs^2-6*s^3*(r^2-s^2)}{6*(r-s)^2*(r+s)^2} [/mm] $

Ich vereinfache weiter:

$ [mm] \bruch{6*[rs^2-s^3*(r^2-s^2)]}{6*(r-s)^2*(r+s)^2} [/mm] $

$ [mm] \bruch{rs^2-s^3*(r^2-s^2)}{(r-s)^2*(r+s)^2} [/mm] $

Und das kann man sicher noch weiter vereinfachen etc. ich lass es mal gut sein und hoffe, mich niergends vertan zu haben

Bezug
                
Bezug
Bruchgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:06 Do 10.12.2009
Autor: sirod

Vielen lieben Dank für deine Mühe :-)
Jetzt ist mir einiges klarer...

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]