matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBruch umformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Bruch umformen
Bruch umformen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruch umformen: Konvergenz
Status: (Frage) beantwortet Status 
Datum: 22:36 Di 22.11.2016
Autor: pc_doctor

Aufgabe
Zeige Konvergenz von:
n -> [mm] \infty [/mm] von [mm] a_n [/mm] = [mm] (\bruch{n+1}{n-1})^n [/mm]





Hallo,

ich würde gerne auf (1 + [mm] \bruch{1}{n})^n [/mm] kommen, weil

e := [mm] \limes_{n\rightarrow\infty} [/mm] (1 + [mm] \bruch{1}{n})^n [/mm]

Ich habe also einfach eine Polynomdivision gemacht
(n+1):(n-1)  = 1 + [mm] \bruch{2}{n-1} [/mm]

Jetzt habe ich also

( 1 + [mm] \bruch{2}{n-1} )^n [/mm]

Ich dachte an eine "0 dazu addieren", aber bringt mich wohl nicht weiter. Was kann ich mit dem Bruch noch machen?

Zweite, wichtigere Frage: Muss ich hier eigentlich was machen? Macht es einen Unterschied, ob im Nenner jetzt n oder n-1 steht? Da n gege unendlich läuft, ist dieses -1 ja wohl kein Problem, oder? Theoretisch könnte da im Nenner auch [mm] n-10^6 [/mm] stehen, das wäre immer noch der gleiche Grenzwert. liegt alles in der Epsilon Umgebung. Von daher: Macht es Sinn, oder kann ich hier direkt als Ergebnis [mm] e^2 [/mm] schreiben, denn diese Folge konvergiert gegen [mm] e^2. [/mm]
Vielen Dank im Voraus.


        
Bezug
Bruch umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:26 Mi 23.11.2016
Autor: M.Rex

Hallo

> Zeige Konvergenz von:
> n -> [mm]\infty[/mm] von [mm]a_n[/mm] = [mm](\bruch{n+1}{n-1})^n[/mm]

>
>
>
>

> Hallo,

>

> ich würde gerne auf (1 + [mm]\bruch{1}{n})^n[/mm] kommen, weil

>

> e := [mm]\limes_{n\rightarrow\infty}[/mm] (1 + [mm]\bruch{1}{n})^n[/mm]

>

> Ich habe also einfach eine Polynomdivision gemacht
> (n+1):(n-1) = 1 + [mm]\bruch{2}{n-1}[/mm]

Das ist super, man könnte auch "geschickt aufsplitten"

[mm] \frac{n+1}{n-1}=\frac{n-1+2}{n-1}=\frac{n-1}{n-1}+\frac{2}{n-1}=1+\frac{2}{n-1} [/mm]

>

> Jetzt habe ich also

>

> ( 1 + [mm]\bruch{2}{n-1} )^n[/mm]

>

> Ich dachte an eine "0 dazu addieren", aber bringt mich wohl
> nicht weiter. Was kann ich mit dem Bruch noch machen?

>

> Zweite, wichtigere Frage: Muss ich hier eigentlich was
> machen? Macht es einen Unterschied, ob im Nenner jetzt n
> oder n-1 steht? Da n gege unendlich läuft, ist dieses -1
> ja wohl kein Problem, oder? Theoretisch könnte da im
> Nenner auch [mm]n-10^6[/mm] stehen, das wäre immer noch der gleiche
> Grenzwert. liegt alles in der Epsilon Umgebung. Von daher:
> Macht es Sinn, oder kann ich hier direkt als Ergebnis [mm]e^2[/mm]
> schreiben, denn diese Folge konvergiert gegen [mm]e^2.[/mm]

Das ist soweit ok, es ist in der Tat hier "irrelevant", ob im Nenner n oder n-1 steht.

Evtl wird es deutlicher, wenn du die Grenzvariable umdefinierst,

[mm] \lim\limits_{n\to\infty}\left(1+\frac{2}{n-1}\right)^{n} [/mm]
ergibt, mit k=n-1
[mm] \lim\limits_{k\to\infty}\left(1+\frac{2}{k}\right)^{k+1} [/mm]
[mm] =\lim\limits_{k\to\infty}\left[\left(1+\frac{2}{k}\right)^{k}\cdot\left(1+\frac{2}{k}\right)^{1}\right] [/mm]
[mm] =\lim\limits_{k\to\infty}\left(1+\frac{2}{k}\right)^{k}\cdot\lim\limits_{k\to\infty}\left(1+\frac{2}{k}\right)^{1} [/mm]
[mm] =e^{2}\cdot(1+0) [/mm]
[mm] =e^{2} [/mm]

> Vielen Dank im Voraus.

>

Marius

Bezug
        
Bezug
Bruch umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:47 Mi 23.11.2016
Autor: DieAcht

Hallo pc_doctor!


Es gilt

      [mm] $\left(\frac{n+1}{n-1}\right)^n=\frac{\left(1+\frac{1}{n}\right)^n}{\left(1-\frac{1}{n}\right)^n}\longrightarrow\frac{e^1}{e^{-1}}=e^2$ [/mm] für [mm] $n\to\infty$. [/mm]


Gruß
DieAcht

Bezug
                
Bezug
Bruch umformen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:54 Mi 23.11.2016
Autor: M.Rex

Hallo DieAcht.

Oh, welch elegante Lösung.

Marius

Bezug
                        
Bezug
Bruch umformen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Mi 23.11.2016
Autor: pc_doctor

Vielen Dank für die super Antworten ;)

Bezug
        
Bezug
Bruch umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Di 29.11.2016
Autor: matheradler

Ich habe die Aufgabenstellung so verstanden, dass nur die Konvergenz gezeigt werden soll, nicht unbedingt der Wert ermittelt werden muß. Das geht dann  mit monotoner Konvergenz: [mm] a_{n} [/mm] ist nach unten beschränkt durch 1 und monoton fallend [mm] \Rightarrow a_{n} [/mm] ist konvergent.
Ein Beispiel für diese Methode auf meiner nicht kommerziellen Hobby-Internetsite www.sportincontro.de, Habbymathe, Analysis-1, Download 2.2, Seite 1301 und Bsp Seite 1302.
Vielleicht hilfts, auch wenn ich Mathe nur als Hobby betreibe und leider arg um Erkenntisse kämpfen muß.
Siggi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]