matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaximaBruch in Polynomdarstellung?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Maxima" - Bruch in Polynomdarstellung?
Bruch in Polynomdarstellung? < Maxima < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maxima"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruch in Polynomdarstellung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Mo 19.05.2008
Autor: springfish

Hallo,

ich habe auf der Suche nach einem Forum für maxima hierher gefunden. Ich hoffe, dass mir hier geholfen werden kann. Ich habe folgendes Problem:

Ich möchte den Audruck:
r1+r2*T/(z-1)+r3/t1*(z-1)/(z-c1)+r4/t2*(z-1)/(z-c2)

[mm] r_1+\bruch{r_2*T}{z-1}+\bruch{r_3}{t_1}*\bruch{z-1}{z-c_1}+\bruch{r_4}{t_2}*\bruch{z-1}{z-c_2} [/mm]

zu einem Bruch zusammenfassen, und zwar so, dass Zähler und Nenner jeweils in Polynomdarstellung als Potenzen von z angegeben werden. Also so:

[mm] \bruch{b_3*z^3+b_2*z^2+b_1*z+b_0}{a_3*z^3+a_2*z^2+a_1*z+a_0} [/mm]

Weiß jemand wie das in maxima funktioniert? Als maxima-Anfänger habe ich da nämlich keine Ahnung und bin auch mit der Dokumentation nicht schlauer geworden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Bruch in Polynomdarstellung?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:35 Di 20.05.2008
Autor: springfish

Ich habe es jetzt hinbekommen, allerdings etwas umständlich:

Mit ratnumer(expr) und ratdenom(expr) erhalte ich das Zähler und Nennerpolynom, die Koeffizienten von [mm] z^n [/mm] erhalte ich dann über coeff(expr, z, n)

Ich erhalte damit ein brauchbares Ergebnis, falls es noch eleganter geht, bin ich über einen Hinweis aber trotzdem noch sehr erfreut.

Bezug
        
Bezug
Bruch in Polynomdarstellung?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Di 20.05.2008
Autor: rainerS

Hallo!

> Ich möchte den Audruck:
>  r1+r2*T/(z-1)+r3/t1*(z-1)/(z-c1)+r4/t2*(z-1)/(z-c2)
>  
> [mm]r_1+\bruch{r_2*T}{z-1}+\bruch{r_3}{t_1}*\bruch{z-1}{z-c_1}+\bruch{r_4}{t_2}*\bruch{z-1}{z-c_2}[/mm]
>  
> zu einem Bruch zusammenfassen, und zwar so, dass Zähler und
> Nenner jeweils in Polynomdarstellung als Potenzen von z
> angegeben werden. Also so:
>  
> [mm]\bruch{b_3*z^3+b_2*z^2+b_1*z+b_0}{a_3*z^3+a_2*z^2+a_1*z+a_0}[/mm]
>  
> Weiß jemand wie das in maxima funktioniert? Als
> maxima-Anfänger habe ich da nämlich keine Ahnung und bin
> auch mit der Dokumentation nicht schlauer geworden.

Benutze ratsimp:

1: B:r1+r2*T/(z-1)+r3/t1*(z-1)/(z-c1)+r4/t2*(z-1)/(z-c2),ratsimp$
2: for i:0 thru 3 do print(b[i],"=", coeff(num(B),z,i))$
3: for i:0 thru 3 do print(a[i],"=", coeff(denom(B),z,i))$


Viele Grüße
   Rainer


Bezug
        
Bezug
Bruch in Polynomdarstellung?: einfach "rat()"
Status: (Antwort) fertig Status 
Datum: 14:29 Mi 21.05.2008
Autor: Peter_Pein

Hallöle,

möglicherweise verstehe ich dich falsch, aber ein einfaches rat(ausdruck,z) scheint die Form zu ergeben, die du möchtest:
1: (%i1) ausdruck:r1+r2*T/(z-1)+r3/t1*(z-1)/(z-c1)+r4/t2*(z-1)/(z-c2);
2: (%o1) (r2*T)/(z-1)+(r4*(z-1))/(t2*(z-c2))+(r3*(z-1))/(t1*(z-c1))+r1
3: (%i2) rat(ausdruck,z);
4: (%o2) (((r1*t1+r3)*t2+r4*t1)*z^3+(r2*t1*t2*T+((-c2-c1-1)*r1*t1+(-c2-2)*r3)*t2+(-c1-2)*r4*t1)*z^2
5: +((-c2-c1)*r2*t1*t2*T+(((c1+1)*c2+c1)*r1*t1+(2*c2+1)*r3)*t2+(2*c1+1)*r4*t1)*z+c1*c2*r2*t1*t2*T+
6: (-c1*c2*r1*t1-c2*r3)*t2-c1*r4*t1)/(t1*t2*z^3+(-c2-c1-1)*t1*t2*z^2+((c1+1)*c2+c1)*t1*t2*z-c1*c2*
7: t1*t2)
8: (%i3) 


Alles Gute,
Peter


Bezug
                
Bezug
Bruch in Polynomdarstellung?: Liste der Koeffizienten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:00 Mi 21.05.2008
Autor: Peter_Pein

Ich sehe gerade, dass du doch eher an den Koeffizienten des Zählers/Nenners interessiert bist. Mit ratnum/ratden bist du schon auf dem richtigen Weg. Rainers Lösung ist da natürlich völlig korrekt, aber als Einzeiler ginge bleistiftsweise:

map(lambda([r],map(lambda([dn],coeff(r(ausdruck),z,dn)),[0,1,2,3])),[ratnumer,ratdenom]);

Peter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maxima"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]